gaparmar
adding utils:
6213d31
import functools
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
import cv2
from transformers import CLIPProcessor, CLIPModel, AutoModel
from transformers.models.clip.modeling_clip import _get_vector_norm
def validate_tensor_list(tensor_list, expected_type=torch.Tensor, min_dims=None, value_range=None, tolerance=0.1):
"""
Validates a list of tensors with specified requirements.
Args:
tensor_list: List to validate
expected_type: Expected type of each element (default: torch.Tensor)
min_dims: Minimum number of dimensions each tensor should have
value_range: Tuple of (min_val, max_val) for tensor values
tolerance: Tolerance for value range checking (default: 0.1)
"""
if not isinstance(tensor_list, list):
raise TypeError(f"Input must be a list, got {type(tensor_list)}")
if len(tensor_list) == 0:
raise ValueError("Input list cannot be empty")
for i, item in enumerate(tensor_list):
if not isinstance(item, expected_type):
raise TypeError(f"List element [{i}] must be {expected_type}, got {type(item)}")
if min_dims is not None and len(item.shape) < min_dims:
raise ValueError(f"List element [{i}] must have at least {min_dims} dimensions, got shape {item.shape}")
if value_range is not None:
min_val, max_val = value_range
item_min, item_max = item.min().item(), item.max().item()
if item_min < (min_val - tolerance) or item_max > (max_val + tolerance):
raise ValueError(f"List element [{i}] values must be in range [{min_val}, {max_val}], got range [{item_min:.3f}, {item_max:.3f}]")
def build_score_fn(name, device="cuda"):
"""Build scoring functions for image quality and diversity assessment.
Args:
name: Score function name (clip_text_img, diversity_dino, dino_cls_pairwise, diversity_clip)
device: Device to load models on (default: cuda)
"""
d_score_nets = {}
if name == "clip_text_img":
m_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
prep_clip = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
score_fn = functools.partial(unary_clip_text_img_t, device=device, m_clip=m_clip, preprocess_clip=prep_clip)
d_score_nets["m_clip"] = m_clip
d_score_nets["prep_clip"] = prep_clip
elif name == "diversity_dino":
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to(device)
score_fn = functools.partial(binary_dino_pairwise_t, device=device, dino_model=dino_model)
d_score_nets["dino_model"] = dino_model
elif name == "dino_cls_pairwise":
dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to(device)
score_fn = functools.partial(binary_dino_cls_pairwise_t, device=device, dino_model=dino_model)
d_score_nets["dino_model"] = dino_model
elif name == "diversity_clip":
m_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
prep_clip = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
score_fn = functools.partial(binary_clip_pairwise_t, device=device, m_clip=m_clip, preprocess_clip=prep_clip)
d_score_nets["m_clip"] = m_clip
d_score_nets["prep_clip"] = prep_clip
else:
raise ValueError(f"Invalid score function name: {name}")
return score_fn, d_score_nets
@torch.no_grad()
def unary_clip_text_img_t(l_images, device, m_clip, preprocess_clip, target_caption, d_cache=None):
"""Compute CLIP text-image similarity scores for a list of images.
Args:
l_images: List of image tensors in range [-1, 1]
device: Device for computation
m_clip: CLIP model
preprocess_clip: CLIP processor
target_caption: Text prompt for similarity comparison
d_cache: Optional cached text embeddings
"""
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
b_images = torch.cat(l_images, dim=0)
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
# re-normalize with clip mean and std
b_images = b_images*0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
if d_cache is None:
text_encoding = preprocess_clip.tokenizer(target_caption, return_tensors="pt", padding=True).to(device)
output = m_clip(pixel_values=b_images, **text_encoding).logits_per_image /m_clip.logit_scale.exp()
_score = output.view(-1).cpu().numpy()
else:
# compute with cached text embeddings
vision_outputs = m_clip.vision_model(pixel_values=b_images, output_attentions=False, output_hidden_states=False,
interpolate_pos_encoding=False, return_dict=True,)
image_embeds = m_clip.visual_projection(vision_outputs[1])
image_embeds = image_embeds / _get_vector_norm(image_embeds)
text_embeds = d_cache["text_embeds"]
_score = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)).t().view(-1).cpu().numpy()
return _score
@torch.no_grad()
def binary_dino_pairwise_t(l_images, device, dino_model):
"""Compute pairwise diversity scores using DINO patch features.
Args:
l_images: List of image tensors in range [-1, 1]
device: Device for computation
dino_model: DINO model for feature extraction
"""
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
b_images = torch.cat(l_images, dim=0)
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
b_images = b_images*0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 1:, :].cpu() # B, 324, 768
N = len(l_images)
score_matrix = np.zeros((N, N))
for i in range(N):
f1 = all_features[i]
for j in range(i+1, N):
f2 = all_features[j]
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
score_matrix[i, j] = cos_sim
return score_matrix
@torch.no_grad()
def binary_dino_cls_pairwise_t(l_images, device, dino_model):
"""Compute pairwise diversity scores using DINO CLS token features.
Args:
l_images: List of image tensors in range [-1, 1]
device: Device for computation
dino_model: DINO model for feature extraction
"""
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
b_images = torch.cat(l_images, dim=0)
_img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
_img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
b_images = b_images*0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 0:1, :].cpu() # B, 1, 768
N = len(l_images)
score_matrix = np.zeros((N, N))
for i in range(N):
f1 = all_features[i]
for j in range(i+1, N):
f2 = all_features[j]
cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
score_matrix[i, j] = cos_sim
return score_matrix
@torch.no_grad()
def binary_clip_pairwise_t(l_images, device, m_clip, preprocess_clip):
"""Compute pairwise diversity scores using CLIP image embeddings.
Args:
l_images: List of image tensors in range [-1, 1]
device: Device for computation
m_clip: CLIP model
preprocess_clip: CLIP processor
"""
# validate input images, l_images should be a list of torch tensors with range [-1, 1]
validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
_img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
_img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
b_images = torch.cat(l_images, dim=0)
b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
# re-normalize with clip mean and std
b_images = b_images*0.5 + 0.5
b_images = (b_images - _img_mean) / _img_std
vision_outputs = m_clip.vision_model(pixel_values=b_images, output_attentions=False, output_hidden_states=False,
interpolate_pos_encoding=False, return_dict=True,)
image_embeds = m_clip.visual_projection(vision_outputs[1])
image_embeds = image_embeds / _get_vector_norm(image_embeds)
N = len(l_images)
score_matrix = np.zeros((N, N))
for i in range(N):
f1 = image_embeds[i]
for j in range(i+1, N):
f2 = image_embeds[j]
cos_sim = (1 - torch.dot(f1, f2)).item()
score_matrix[i, j] = cos_sim
return score_matrix