from gurobipy import Model, GRB, quicksum def gurobi_solver(u, D, n_select, lam=1.0, time_limit=5.0): """Solve quadratic integer programming problem for subset selection with unary and pairwise terms. Args: u: Unary scores for each item D: Pairwise similarity matrix (upper triangular) n_select: Number of items to select lam: Weight for pairwise term (default: 1.0) time_limit: Solver time limit in seconds (default: 5.0) """ n = len(u) model = Model() model.Params.LogToConsole = 0 model.Params.TimeLimit = time_limit model.Params.OutputFlag = 0 # Variables: x[i] in {0,1} x = model.addVars(n, vtype=GRB.BINARY, name="x") # Constraint: exactly k items selected model.addConstr(quicksum(x[i] for i in range(n)) == n_select, name="select_k") # Objective: sum of unary + lambda * pairwise linear_part = quicksum(u[i] * x[i] for i in range(n)) quadratic_part = quicksum(lam * D[i, j] * x[i] * x[j] for i in range(n) for j in range(i + 1, n)) model.setObjective(linear_part + quadratic_part, GRB.MAXIMIZE) model.optimize() selected_indices = [i for i in range(n) if x[i].X > 0.5] return selected_indices