File size: 9,845 Bytes
1930c69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import functools
import torch
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as transforms
import cv2

from transformers import CLIPProcessor, CLIPModel, AutoModel
from transformers.models.clip.modeling_clip import _get_vector_norm



def validate_tensor_list(tensor_list, expected_type=torch.Tensor, min_dims=None, value_range=None, tolerance=0.1):
    """
    Validates a list of tensors with specified requirements.
    
    Args:
        tensor_list: List to validate
        expected_type: Expected type of each element (default: torch.Tensor)
        min_dims: Minimum number of dimensions each tensor should have
        value_range: Tuple of (min_val, max_val) for tensor values
        tolerance: Tolerance for value range checking (default: 0.1)
    """
    if not isinstance(tensor_list, list):
        raise TypeError(f"Input must be a list, got {type(tensor_list)}")
    
    if len(tensor_list) == 0:
        raise ValueError("Input list cannot be empty")
    
    for i, item in enumerate(tensor_list):
        if not isinstance(item, expected_type):
            raise TypeError(f"List element [{i}] must be {expected_type}, got {type(item)}")
        
        if min_dims is not None and len(item.shape) < min_dims:
            raise ValueError(f"List element [{i}] must have at least {min_dims} dimensions, got shape {item.shape}")
        
        if value_range is not None:
            min_val, max_val = value_range
            item_min, item_max = item.min().item(), item.max().item()
            if item_min < (min_val - tolerance) or item_max > (max_val + tolerance):
                raise ValueError(f"List element [{i}] values must be in range [{min_val}, {max_val}], got range [{item_min:.3f}, {item_max:.3f}]")



def build_score_fn(name, device="cuda"):
    """Build scoring functions for image quality and diversity assessment.
    
    Args:
        name: Score function name (clip_text_img, diversity_dino, dino_cls_pairwise, diversity_clip)
        device: Device to load models on (default: cuda)
    """
    d_score_nets = {}

    if name == "clip_text_img":
        m_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
        prep_clip = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
        score_fn = functools.partial(unary_clip_text_img_t, device=device, m_clip=m_clip, preprocess_clip=prep_clip)
        d_score_nets["m_clip"] = m_clip
        d_score_nets["prep_clip"] = prep_clip
    
    elif name == "diversity_dino":
        dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to(device)
        score_fn = functools.partial(binary_dino_pairwise_t, device=device, dino_model=dino_model)
        d_score_nets["dino_model"] = dino_model
    
    elif name == "dino_cls_pairwise":
        dino_model = AutoModel.from_pretrained('facebook/dinov2-base').to(device)
        score_fn = functools.partial(binary_dino_cls_pairwise_t, device=device, dino_model=dino_model)
        d_score_nets["dino_model"] = dino_model
    
    elif name == "diversity_clip":
        m_clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
        prep_clip = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
        score_fn = functools.partial(binary_clip_pairwise_t, device=device, m_clip=m_clip, preprocess_clip=prep_clip)
        d_score_nets["m_clip"] = m_clip
        d_score_nets["prep_clip"] = prep_clip
    
    else:
        raise ValueError(f"Invalid score function name: {name}")
    
    return score_fn, d_score_nets


@torch.no_grad()
def unary_clip_text_img_t(l_images, device, m_clip, preprocess_clip, target_caption, d_cache=None):
    """Compute CLIP text-image similarity scores for a list of images.
    
    Args:
        l_images: List of image tensors in range [-1, 1]
        device: Device for computation
        m_clip: CLIP model
        preprocess_clip: CLIP processor
        target_caption: Text prompt for similarity comparison
        d_cache: Optional cached text embeddings
    """
    # validate input images, l_images should be a list of torch tensors with range [-1, 1]
    validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
    
    _img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
    _img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
    b_images = torch.cat(l_images, dim=0)
    b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
    # re-normalize with clip mean and std
    b_images = b_images*0.5 + 0.5
    b_images = (b_images - _img_mean) / _img_std
    
    if d_cache is None:
        text_encoding = preprocess_clip.tokenizer(target_caption, return_tensors="pt", padding=True).to(device)
        output = m_clip(pixel_values=b_images, **text_encoding).logits_per_image /m_clip.logit_scale.exp()
        _score = output.view(-1).cpu().numpy()
    else:
        # compute with cached text embeddings
        vision_outputs = m_clip.vision_model(pixel_values=b_images, output_attentions=False, output_hidden_states=False,
            interpolate_pos_encoding=False, return_dict=True,)
        image_embeds = m_clip.visual_projection(vision_outputs[1])
        image_embeds = image_embeds / _get_vector_norm(image_embeds)
        text_embeds = d_cache["text_embeds"]
        _score = torch.matmul(text_embeds, image_embeds.t().to(text_embeds.device)).t().view(-1).cpu().numpy()
    
    return _score


@torch.no_grad()
def binary_dino_pairwise_t(l_images, device, dino_model):
    """Compute pairwise diversity scores using DINO patch features.
    
    Args:
        l_images: List of image tensors in range [-1, 1]
        device: Device for computation
        dino_model: DINO model for feature extraction
    """
    # validate input images, l_images should be a list of torch tensors with range [-1, 1]
    validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
    
    b_images = torch.cat(l_images, dim=0)
    _img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
    _img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
    
    b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
    b_images = b_images*0.5 + 0.5
    b_images = (b_images - _img_mean) / _img_std
    all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 1:, :].cpu() # B, 324, 768
    
    N = len(l_images)
    score_matrix = np.zeros((N, N))
    for i in range(N):
        f1 = all_features[i]
        for j in range(i+1, N):
            f2 = all_features[j]
            cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
            score_matrix[i, j] = cos_sim
    return score_matrix

@torch.no_grad()
def binary_dino_cls_pairwise_t(l_images, device, dino_model):
    """Compute pairwise diversity scores using DINO CLS token features.
    
    Args:
        l_images: List of image tensors in range [-1, 1]
        device: Device for computation
        dino_model: DINO model for feature extraction
    """
    # validate input images, l_images should be a list of torch tensors with range [-1, 1]
    validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
    
    b_images = torch.cat(l_images, dim=0)
    _img_mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
    _img_std = torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
    
    b_images = F.interpolate(b_images, size=(256, 256), mode="bilinear", align_corners=False)
    b_images = b_images*0.5 + 0.5
    b_images = (b_images - _img_mean) / _img_std
    all_features = dino_model(pixel_values=b_images).last_hidden_state[:, 0:1, :].cpu() # B, 1, 768
    
    N = len(l_images)
    score_matrix = np.zeros((N, N))
    for i in range(N):
        f1 = all_features[i]
        for j in range(i+1, N):
            f2 = all_features[j]
            cos_sim = (1 - F.cosine_similarity(f1, f2, dim=1)).mean().item()
            score_matrix[i, j] = cos_sim
    return score_matrix

@torch.no_grad()
def binary_clip_pairwise_t(l_images, device, m_clip, preprocess_clip):
    """Compute pairwise diversity scores using CLIP image embeddings.
    
    Args:
        l_images: List of image tensors in range [-1, 1]
        device: Device for computation
        m_clip: CLIP model
        preprocess_clip: CLIP processor
    """
    # validate input images, l_images should be a list of torch tensors with range [-1, 1]
    validate_tensor_list(l_images, expected_type=torch.Tensor, min_dims=3, value_range=(-1, 1))
    
    _img_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).view(1, 3, 1, 1).to(device)
    _img_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).view(1, 3, 1, 1).to(device)
    b_images = torch.cat(l_images, dim=0)
    b_images = F.interpolate(b_images, size=(224, 224), mode="bilinear", align_corners=False)
    # re-normalize with clip mean and std
    b_images = b_images*0.5 + 0.5
    b_images = (b_images - _img_mean) / _img_std
    
    vision_outputs = m_clip.vision_model(pixel_values=b_images, output_attentions=False, output_hidden_states=False,
            interpolate_pos_encoding=False, return_dict=True,)
    image_embeds = m_clip.visual_projection(vision_outputs[1])
    image_embeds = image_embeds / _get_vector_norm(image_embeds)
    
    N = len(l_images)
    score_matrix = np.zeros((N, N))
    for i in range(N):
        f1 = image_embeds[i]
        for j in range(i+1, N):
            f2 = image_embeds[j]
            cos_sim = (1 - torch.dot(f1, f2)).item()
            score_matrix[i, j] = cos_sim
    return score_matrix