Commit
·
058f1d9
0
Parent(s):
First commit
Browse files- Dockerfile +21 -0
- README.md +8 -0
- app/config.py +13 -0
- app/main.py +115 -0
- app/tasks/__init__.py +0 -0
- app/tasks/inference.py +115 -0
- app/tasks/training.py +246 -0
- app/test/__init__.py +0 -0
- app/test/fixture.py +19 -0
- app/test/test_inferencing_endpoint.py +86 -0
- app/test/test_training_endpoint.py +40 -0
- docker-compose.test.yaml +5 -0
- docker-compose.yaml +25 -0
Dockerfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This Dockerfile serves as the build file for Huggingface Spaces
|
2 |
+
FROM huggingface/transformers-pytorch-gpu
|
3 |
+
|
4 |
+
ARG ML_APP_LISTEN_PORT=7860
|
5 |
+
ARG ML_MLFLOW_ENDPOINT
|
6 |
+
ARG ML_HF_ACCESS_TOKEN
|
7 |
+
|
8 |
+
ENV APP_LISTEN_PORT=${ML_APP_LISTEN_PORT}
|
9 |
+
ENV MLFLOW_ENDPOINT=${ML_MLFLOW_ENDPOINT}
|
10 |
+
ENV HF_ACCESS_TOKEN=${ML_HF_ACCESS_TOKEN}
|
11 |
+
|
12 |
+
RUN apt-get update
|
13 |
+
RUN /usr/bin/python3 -m pip install uvicorn fastapi mlflow huggingface_hub httpx
|
14 |
+
|
15 |
+
WORKDIR /app
|
16 |
+
|
17 |
+
COPY ./app /app
|
18 |
+
|
19 |
+
EXPOSE ${ML_APP_LISTEN_PORT}
|
20 |
+
|
21 |
+
ENTRYPOINT [ "/usr/bin/python3", "/app/main.py" ]
|
README.md
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: SocialMedia Sentiment Analysis
|
3 |
+
emoji: 🐳
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: gray
|
6 |
+
sdk: docker
|
7 |
+
app_port: 7860
|
8 |
+
---
|
app/config.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
def is_test_mode():
|
4 |
+
"""
|
5 |
+
Checks whether test mode is enabled or not.
|
6 |
+
|
7 |
+
Returns:
|
8 |
+
bool: True if test mode is enabled, false otherwise
|
9 |
+
"""
|
10 |
+
return os.environ.get("TEST_MODE", None) == "1"
|
11 |
+
|
12 |
+
def enable_test_mode():
|
13 |
+
os.environ["TEST_MODE"] = "1"
|
app/main.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, BackgroundTasks
|
2 |
+
from fastapi.responses import JSONResponse, HTMLResponse
|
3 |
+
from pydantic import BaseModel
|
4 |
+
import uvicorn
|
5 |
+
from uvicorn.config import logger
|
6 |
+
import os
|
7 |
+
import argparse
|
8 |
+
from tasks.training import TrainingTask
|
9 |
+
from config import enable_test_mode
|
10 |
+
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
@app.post("/train/start", response_class=JSONResponse)
|
14 |
+
async def start_model_training(background_tasks: BackgroundTasks):
|
15 |
+
"""
|
16 |
+
Endpoint on which a request can be sent to start model re-training,
|
17 |
+
if there's no training task currently running.
|
18 |
+
The task will be carried out in background and its status can be
|
19 |
+
polled via /train/get_state.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
background_tasks (BackgroundTasks): BG Tasks scheduler provided by FastAPI
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
dict: A dictionary containing a message of the outcome for the request.
|
26 |
+
"""
|
27 |
+
if not TrainingTask.has_instance():
|
28 |
+
background_tasks.add_task(TrainingTask.get_instance())
|
29 |
+
|
30 |
+
return {
|
31 |
+
"message": "Model training was scheduled and will begin shortly.",
|
32 |
+
}
|
33 |
+
|
34 |
+
return {
|
35 |
+
"message": "A training instance is already running.",
|
36 |
+
}
|
37 |
+
|
38 |
+
@app.post("/train/get_state", response_class=JSONResponse)
|
39 |
+
async def poll_model_training_state():
|
40 |
+
"""
|
41 |
+
Checks if there is currently a training task ongoing.
|
42 |
+
If so, returns whether it's done and/or if an error occurred.
|
43 |
+
Otherwise if no instance is running, returns only a message.
|
44 |
+
|
45 |
+
Returns:
|
46 |
+
dict: Dictionary containing either done/error or message.
|
47 |
+
"""
|
48 |
+
if TrainingTask.has_instance():
|
49 |
+
train_instance : TrainingTask = TrainingTask.get_instance()
|
50 |
+
is_done = train_instance.is_done()
|
51 |
+
has_error = train_instance.has_error()
|
52 |
+
|
53 |
+
if is_done:
|
54 |
+
TrainingTask.clear_instance()
|
55 |
+
|
56 |
+
return {
|
57 |
+
"done": is_done,
|
58 |
+
"error": has_error,
|
59 |
+
}
|
60 |
+
|
61 |
+
return {
|
62 |
+
"message": "No training instance running!",
|
63 |
+
}
|
64 |
+
|
65 |
+
class InferenceRequest(BaseModel):
|
66 |
+
"""
|
67 |
+
Provides a model/schema for the accepted request body for incoming
|
68 |
+
inference requests.
|
69 |
+
"""
|
70 |
+
messages: list[str]
|
71 |
+
|
72 |
+
@app.post("/inference", response_class=JSONResponse)
|
73 |
+
async def inference(data: InferenceRequest):
|
74 |
+
"""
|
75 |
+
|
76 |
+
|
77 |
+
Args:
|
78 |
+
data (InferenceRequest): Structure containing a list of
|
79 |
+
messages that shall be evaluated
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
json: A json list containing the sentiment analysis for each message.
|
83 |
+
Each element consists of a dictionary with the following keys:
|
84 |
+
positive, neutral, negative
|
85 |
+
"""
|
86 |
+
|
87 |
+
from tasks.inference import infer_task
|
88 |
+
return infer_task.predict(data.messages)
|
89 |
+
|
90 |
+
@app.get("/", response_class=HTMLResponse)
|
91 |
+
async def root():
|
92 |
+
"""
|
93 |
+
The root endpoint for our hosted application. Only shows a message
|
94 |
+
showing that it's up and running.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
str: A html response containing a hello world-like string
|
98 |
+
"""
|
99 |
+
return "Hi there! It's a nice blank page, isn't it?"
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
"""
|
103 |
+
Entrypoint for the application executed via command-line.
|
104 |
+
It accepts an optional argument "--test" to enable the test mode.
|
105 |
+
"""
|
106 |
+
parser = argparse.ArgumentParser()
|
107 |
+
parser.add_argument("test", nargs="?", default="no")
|
108 |
+
args = parser.parse_args()
|
109 |
+
|
110 |
+
if args.test == "yes":
|
111 |
+
enable_test_mode()
|
112 |
+
|
113 |
+
config = uvicorn.Config("main:app", host="0.0.0.0", port=int(os.environ["APP_LISTEN_PORT"]), log_level="debug")
|
114 |
+
server = uvicorn.Server(config)
|
115 |
+
server.run()
|
app/tasks/__init__.py
ADDED
File without changes
|
app/tasks/inference.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from uvicorn.config import logger
|
2 |
+
from transformers import AutoModelForSequenceClassification
|
3 |
+
from transformers import AutoTokenizer, AutoConfig
|
4 |
+
import numpy as np
|
5 |
+
import mlflow
|
6 |
+
import os
|
7 |
+
import time
|
8 |
+
from scipy.special import softmax
|
9 |
+
|
10 |
+
# HuggingFace Model to be used for inferencing
|
11 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
|
12 |
+
|
13 |
+
class InferenceTask:
|
14 |
+
|
15 |
+
def __init__(self):
|
16 |
+
self.clear()
|
17 |
+
self.load_model()
|
18 |
+
|
19 |
+
def load_model(self):
|
20 |
+
try:
|
21 |
+
self.__tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
22 |
+
self.__config = AutoConfig.from_pretrained(MODEL)
|
23 |
+
self.__model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
24 |
+
self.__is_loaded = True
|
25 |
+
except Exception as ex:
|
26 |
+
logger.error("Failed to load inference model: {ex}")
|
27 |
+
self.clear()
|
28 |
+
return False
|
29 |
+
|
30 |
+
return True
|
31 |
+
|
32 |
+
def clear(self):
|
33 |
+
self.__is_loaded = False
|
34 |
+
self.__tokenizer = None
|
35 |
+
self.__config = None
|
36 |
+
self.__model = None
|
37 |
+
|
38 |
+
def is_loaded(self):
|
39 |
+
return self.__is_loaded
|
40 |
+
|
41 |
+
def predict(self, messages: list[str]):
|
42 |
+
if len(messages) == 0:
|
43 |
+
return None
|
44 |
+
|
45 |
+
if not self.is_loaded() and not self.load_model():
|
46 |
+
return None
|
47 |
+
|
48 |
+
mlflow.set_tracking_uri(os.environ["MLFLOW_ENDPOINT"])
|
49 |
+
mlflow.set_experiment("Sentiment Analysis")
|
50 |
+
|
51 |
+
with mlflow.start_run() as run:
|
52 |
+
preprocessed_messages = self.__preprocess(messages)
|
53 |
+
labelized_scores = []
|
54 |
+
|
55 |
+
for message in preprocessed_messages:
|
56 |
+
encoded_input = self.__tokenizer(message, return_tensors='pt', padding="longest")
|
57 |
+
output = self.__model(**encoded_input)
|
58 |
+
scores = output[0][0].detach().numpy()
|
59 |
+
scores = softmax(scores)
|
60 |
+
scores = self.__labelize(scores)
|
61 |
+
labelized_scores.append(scores)
|
62 |
+
|
63 |
+
mean_sentiment = self.__calculate_mean_sentiment(labelized_scores)
|
64 |
+
mean_sentiment["samples"] = len(labelized_scores)
|
65 |
+
logger.info(mean_sentiment)
|
66 |
+
|
67 |
+
mlflow.log_metrics(mean_sentiment, step=int(time.time()))
|
68 |
+
|
69 |
+
return labelized_scores
|
70 |
+
|
71 |
+
def __calculate_mean_sentiment(self, labelized_scores: list):
|
72 |
+
total_samples = float(len(labelized_scores))
|
73 |
+
|
74 |
+
mean_sentiment = {
|
75 |
+
"positive": 0.0,
|
76 |
+
"neutral": 0.0,
|
77 |
+
"negative": 0.0,
|
78 |
+
}
|
79 |
+
|
80 |
+
for score in labelized_scores:
|
81 |
+
mean_sentiment["positive"] += score["positive"]
|
82 |
+
mean_sentiment["neutral"] += score["neutral"]
|
83 |
+
mean_sentiment["negative"] += score["negative"]
|
84 |
+
|
85 |
+
mean_sentiment["positive"] /= total_samples
|
86 |
+
mean_sentiment["neutral"] /= total_samples
|
87 |
+
mean_sentiment["negative"] /= total_samples
|
88 |
+
|
89 |
+
return mean_sentiment
|
90 |
+
|
91 |
+
# Preprocess text (username and link placeholders)
|
92 |
+
def __preprocess(self, messages: list[str]):
|
93 |
+
msg_list = []
|
94 |
+
for message in messages:
|
95 |
+
new_message = []
|
96 |
+
for t in message.split(" "):
|
97 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
98 |
+
t = 'http' if t.startswith('http') else t
|
99 |
+
new_message.append(t)
|
100 |
+
msg_list.append(" ".join(new_message))
|
101 |
+
return msg_list
|
102 |
+
|
103 |
+
def __labelize(self, scores):
|
104 |
+
output = {}
|
105 |
+
ranking = np.argsort(scores)
|
106 |
+
ranking = ranking[::-1]
|
107 |
+
for i in range(scores.shape[0]):
|
108 |
+
l = self.__config.id2label[ranking[i]]
|
109 |
+
s = float(scores[ranking[i]])
|
110 |
+
output[l] = s
|
111 |
+
return output
|
112 |
+
|
113 |
+
# Preload a global instance so that inference can be
|
114 |
+
# executed immediately when requested
|
115 |
+
infer_task = InferenceTask()
|
app/tasks/training.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
import numpy as np
|
3 |
+
from uvicorn.config import logger
|
4 |
+
from datasets import load_dataset
|
5 |
+
from transformers import (
|
6 |
+
AutoModelForSequenceClassification,
|
7 |
+
AutoTokenizer,
|
8 |
+
Trainer,
|
9 |
+
TrainingArguments,
|
10 |
+
pipeline,
|
11 |
+
)
|
12 |
+
from huggingface_hub import login, logout
|
13 |
+
|
14 |
+
import os
|
15 |
+
import mlflow
|
16 |
+
from tasks.inference import infer_task
|
17 |
+
from config import is_test_mode
|
18 |
+
|
19 |
+
"""
|
20 |
+
Documentation:
|
21 |
+
- https://huggingface.co/docs/transformers/en//training
|
22 |
+
- https://mlflow.org/docs/latest/llms/transformers/tutorials/fine-tuning/transformers-fine-tuning
|
23 |
+
"""
|
24 |
+
|
25 |
+
MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
26 |
+
DATASET = "zeroshot/twitter-financial-news-sentiment"
|
27 |
+
HF_DEST_REPO = "financial-twitter-roberta-sentiment"
|
28 |
+
|
29 |
+
RNG_SEED = 22
|
30 |
+
|
31 |
+
class TrainingTask:
|
32 |
+
|
33 |
+
TRAINING_TASK_INST_SINGLETON = None
|
34 |
+
|
35 |
+
def __init__(self):
|
36 |
+
self.__is_done = False
|
37 |
+
self.__has_error = False
|
38 |
+
|
39 |
+
self.__train_dataset = None
|
40 |
+
self.__test_dataset = None
|
41 |
+
self.__tokenizer = None
|
42 |
+
self.__train_tokenized = None
|
43 |
+
self.__test_tokenized = None
|
44 |
+
self.__model = None
|
45 |
+
self.__trainer = None
|
46 |
+
self.__run_id = None
|
47 |
+
|
48 |
+
@staticmethod
|
49 |
+
def has_instance():
|
50 |
+
return TrainingTask.TRAINING_TASK_INST_SINGLETON is not None
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def get_instance():
|
54 |
+
if TrainingTask.TRAINING_TASK_INST_SINGLETON is None:
|
55 |
+
TrainingTask.TRAINING_TASK_INST_SINGLETON = TrainingTask()
|
56 |
+
|
57 |
+
return TrainingTask.TRAINING_TASK_INST_SINGLETON
|
58 |
+
|
59 |
+
@staticmethod
|
60 |
+
def clear_instance():
|
61 |
+
del TrainingTask.TRAINING_TASK_INST_SINGLETON
|
62 |
+
TrainingTask.TRAINING_TASK_INST_SINGLETON = None
|
63 |
+
|
64 |
+
def has_error(self):
|
65 |
+
return self.__has_error
|
66 |
+
|
67 |
+
def is_done(self):
|
68 |
+
return self.__is_done
|
69 |
+
|
70 |
+
def __call__(self, *args, **kwds):
|
71 |
+
self.__has_error = False
|
72 |
+
self.__is_done = False
|
73 |
+
|
74 |
+
if is_test_mode():
|
75 |
+
# Simulate a successful training run in test mode
|
76 |
+
self.__has_error = False
|
77 |
+
self.__is_done = True
|
78 |
+
return
|
79 |
+
|
80 |
+
login(token=os.environ["HF_ACCESS_TOKEN"])
|
81 |
+
|
82 |
+
try:
|
83 |
+
self.__load_datasets()
|
84 |
+
self.__tokenize()
|
85 |
+
self.__load_model()
|
86 |
+
self.__train()
|
87 |
+
self.__evaluate()
|
88 |
+
self.__deploy()
|
89 |
+
except Exception as ex:
|
90 |
+
logger.error(f"Error during training: {ex}")
|
91 |
+
self.__has_error = True
|
92 |
+
finally:
|
93 |
+
self.__is_done = True
|
94 |
+
|
95 |
+
logout()
|
96 |
+
|
97 |
+
self.__reload_inference_model()
|
98 |
+
|
99 |
+
def __load_datasets(self):
|
100 |
+
# Load the dataset.
|
101 |
+
dataset = load_dataset(DATASET)
|
102 |
+
|
103 |
+
# Split train/test by an 8/2 ratio.
|
104 |
+
dataset_train_test = dataset["train"].train_test_split(test_size=0.2)
|
105 |
+
self.__train_dataset = dataset_train_test["train"]
|
106 |
+
self.__test_dataset = dataset_train_test["test"]
|
107 |
+
|
108 |
+
# Swap labels so that they match what the model actually expects
|
109 |
+
# The model expects {0: positive, 1: neutral, 2: negative}
|
110 |
+
# But the dataset uses {0: positive, 1: negative, 2: neutral}
|
111 |
+
# So here we just flip 1<->2 to remain consistent
|
112 |
+
def label_filter(row):
|
113 |
+
row["label"] = { 0: 0, 1: 2, 2: 1 }[row["label"]]
|
114 |
+
return row
|
115 |
+
|
116 |
+
self.__train_dataset = self.__train_dataset.map(label_filter)
|
117 |
+
self.__test_dataset = self.__test_dataset.map(label_filter)
|
118 |
+
|
119 |
+
def __tokenize(self):
|
120 |
+
# Load the tokenizer for the model.
|
121 |
+
self.__tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
122 |
+
|
123 |
+
def tokenize_function(examples):
|
124 |
+
# Pad/truncate each text to 512 tokens. Enforcing the same shape
|
125 |
+
# could make the training faster.
|
126 |
+
return self.__tokenizer(
|
127 |
+
examples["text"],
|
128 |
+
padding="max_length",
|
129 |
+
truncation=True,
|
130 |
+
max_length=256,
|
131 |
+
)
|
132 |
+
|
133 |
+
# Tokenize the train and test datasets
|
134 |
+
self.__train_tokenized = self.__train_dataset.map(tokenize_function)
|
135 |
+
self.__train_tokenized = self.__train_tokenized.remove_columns(["text"]).shuffle(seed=RNG_SEED)
|
136 |
+
|
137 |
+
self.__test_tokenized = self.__test_dataset.map(tokenize_function)
|
138 |
+
self.__test_tokenized = self.__test_tokenized.remove_columns(["text"]).shuffle(seed=RNG_SEED)
|
139 |
+
|
140 |
+
def __load_model(self):
|
141 |
+
# Set the mapping between int label and its meaning.
|
142 |
+
id2label = {0: "Bearish", 1: "Neutral", 2: "Bullish"}
|
143 |
+
label2id = {"Bearish": 0, "Neutral": 1, "Bullish": 2}
|
144 |
+
|
145 |
+
# Acquire the model from the Hugging Face Hub, providing label and id mappings so that both we and the model can 'speak' the same language.
|
146 |
+
self.__model = AutoModelForSequenceClassification.from_pretrained(
|
147 |
+
MODEL,
|
148 |
+
num_labels=3,
|
149 |
+
label2id=label2id,
|
150 |
+
id2label=id2label,
|
151 |
+
)
|
152 |
+
|
153 |
+
def __train(self):
|
154 |
+
# Define the target optimization metric
|
155 |
+
metric = evaluate.load("accuracy")
|
156 |
+
|
157 |
+
# Define a function for calculating our defined target optimization metric during training
|
158 |
+
def compute_metrics(eval_pred):
|
159 |
+
logits, labels = eval_pred
|
160 |
+
predictions = np.argmax(logits, axis=-1)
|
161 |
+
return metric.compute(predictions=predictions, references=labels)
|
162 |
+
|
163 |
+
# Checkpoints will be output to this `training_output_dir`.
|
164 |
+
training_output_dir = "/tmp/sentiment_trainer"
|
165 |
+
training_args = TrainingArguments(
|
166 |
+
output_dir=training_output_dir,
|
167 |
+
eval_strategy="epoch",
|
168 |
+
per_device_train_batch_size=8,
|
169 |
+
per_device_eval_batch_size=8,
|
170 |
+
logging_steps=8,
|
171 |
+
num_train_epochs=3,
|
172 |
+
)
|
173 |
+
|
174 |
+
# Instantiate a `Trainer` instance that will be used to initiate a training run.
|
175 |
+
self.__trainer = Trainer(
|
176 |
+
model=self.__model,
|
177 |
+
args=training_args,
|
178 |
+
train_dataset=self.__train_tokenized,
|
179 |
+
eval_dataset=self.__test_tokenized,
|
180 |
+
compute_metrics=compute_metrics,
|
181 |
+
)
|
182 |
+
|
183 |
+
mlflow.set_tracking_uri(os.environ["MLFLOW_ENDPOINT"])
|
184 |
+
mlflow.set_experiment("Sentiment Classifier Training")
|
185 |
+
|
186 |
+
with mlflow.start_run() as run:
|
187 |
+
self.__run_id = run.info.run_id
|
188 |
+
self.__trainer.train()
|
189 |
+
|
190 |
+
def __evaluate(self):
|
191 |
+
tuned_pipeline = pipeline(
|
192 |
+
task="text-classification",
|
193 |
+
model=self.__trainer.model,
|
194 |
+
batch_size=8,
|
195 |
+
tokenizer=self.__tokenizer,
|
196 |
+
device="cpu", # or cuda
|
197 |
+
)
|
198 |
+
|
199 |
+
quick_check = (
|
200 |
+
"I have a question regarding the project development timeline and allocated resources; "
|
201 |
+
"specifically, how certain are you that John and Ringo can work together on writing this next song? "
|
202 |
+
"Do we need to get Paul involved here, or do you truly believe, as you said, 'nah, they got this'?"
|
203 |
+
)
|
204 |
+
|
205 |
+
result = tuned_pipeline(quick_check)
|
206 |
+
logger.debug("Test evaluation of fine-tuned model: %s %.6f" % (result[0]["label"], result[0]["score"]))
|
207 |
+
|
208 |
+
# Define a set of parameters that we would like to be able to flexibly override at inference time, along with their default values
|
209 |
+
model_config = {"batch_size": 8}
|
210 |
+
|
211 |
+
# Infer the model signature, including a representative input, the expected output, and the parameters that we would like to be able to override at inference time.
|
212 |
+
signature = mlflow.models.infer_signature(
|
213 |
+
["This is a test!", "And this is also a test."],
|
214 |
+
mlflow.transformers.generate_signature_output(
|
215 |
+
tuned_pipeline, ["This is a test response!", "So is this."]
|
216 |
+
),
|
217 |
+
params=model_config,
|
218 |
+
)
|
219 |
+
|
220 |
+
# Log the pipeline to the existing training run
|
221 |
+
with mlflow.start_run(run_id=self.__run_id):
|
222 |
+
model_info = mlflow.transformers.log_model(
|
223 |
+
transformers_model=tuned_pipeline,
|
224 |
+
artifact_path="fine_tuned",
|
225 |
+
signature=signature,
|
226 |
+
input_example=["Pass in a string", "And have it mark as spam or not."],
|
227 |
+
model_config=model_config,
|
228 |
+
)
|
229 |
+
|
230 |
+
# Load our saved model in the native transformers format
|
231 |
+
loaded = mlflow.transformers.load_model(model_uri=model_info.model_uri)
|
232 |
+
|
233 |
+
# Define a test example that we expect to be classified as spam
|
234 |
+
validation_text = (
|
235 |
+
"Want to learn how to make MILLIONS with no effort? Click HERE now! See for yourself! Guaranteed to make you instantly rich! "
|
236 |
+
"Don't miss out you could be a winner!"
|
237 |
+
)
|
238 |
+
|
239 |
+
# validate the performance of our fine-tuning
|
240 |
+
loaded(validation_text)
|
241 |
+
|
242 |
+
def __deploy(self):
|
243 |
+
self.__trainer.push_to_hub(HF_DEST_REPO)
|
244 |
+
|
245 |
+
def __reload_inference_model(self):
|
246 |
+
infer_task.load_model()
|
app/test/__init__.py
ADDED
File without changes
|
app/test/fixture.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
from fastapi.testclient import TestClient
|
3 |
+
from main import app
|
4 |
+
import os
|
5 |
+
|
6 |
+
@pytest.fixture()
|
7 |
+
def app_client():
|
8 |
+
"""
|
9 |
+
Barebone test fixture that initializes a FastAPI TestClient
|
10 |
+
which can be used to test all endpoints provided by the application.
|
11 |
+
|
12 |
+
Yields:
|
13 |
+
TestClient: A client hosting the whole application so that it
|
14 |
+
can be accessed and controlled programmatically.
|
15 |
+
"""
|
16 |
+
os.environ["TEST_MODE"] = "1" # Turns off actual model training
|
17 |
+
|
18 |
+
client = TestClient(app)
|
19 |
+
yield client
|
app/test/test_inferencing_endpoint.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .fixture import app_client
|
2 |
+
import json
|
3 |
+
|
4 |
+
def test_inference_endpoint(app_client):
|
5 |
+
"""
|
6 |
+
Tests the output of the inference endpoint of the application.
|
7 |
+
|
8 |
+
Given:
|
9 |
+
- Payload with valid list of messages
|
10 |
+
When:
|
11 |
+
- POST Request sent to inference endpoint
|
12 |
+
Then:
|
13 |
+
- Expect message to be classified as positive
|
14 |
+
"""
|
15 |
+
response = app_client.post(
|
16 |
+
"/inference",
|
17 |
+
headers={
|
18 |
+
"Content-Type": "application/json",
|
19 |
+
},
|
20 |
+
json={
|
21 |
+
"messages": [
|
22 |
+
"BTC is going to skyrocket!",
|
23 |
+
],
|
24 |
+
}
|
25 |
+
)
|
26 |
+
|
27 |
+
assert response.status_code == 200
|
28 |
+
output = json.loads(response.content)
|
29 |
+
assert isinstance(output, list)
|
30 |
+
assert len(output) == 1
|
31 |
+
assert output[0]["positive"] > output[0]["negative"] and output[0]["positive"] > output[0]["neutral"]
|
32 |
+
|
33 |
+
|
34 |
+
def test_inference_endpoint_with_wrong_payload(app_client):
|
35 |
+
"""
|
36 |
+
Tests the output of the inference endpoint of the application with an
|
37 |
+
invalid payload.
|
38 |
+
This should yield a 422 status error as FastAPI will not be able
|
39 |
+
to translate the payload into the InferenceRequest model.
|
40 |
+
|
41 |
+
Given:
|
42 |
+
- Payload with wrong message key
|
43 |
+
When:
|
44 |
+
- POST Request sent to inference endpoint
|
45 |
+
Then:
|
46 |
+
- Expect 422 status code
|
47 |
+
"""
|
48 |
+
response = app_client.post(
|
49 |
+
"/inference",
|
50 |
+
headers={
|
51 |
+
"Content-Type": "application/json",
|
52 |
+
},
|
53 |
+
json={
|
54 |
+
"msgs": [
|
55 |
+
"BTC is going to skyrocket!",
|
56 |
+
],
|
57 |
+
}
|
58 |
+
)
|
59 |
+
|
60 |
+
assert response.status_code == 422 # Unprocessable entity
|
61 |
+
|
62 |
+
def test_inference_endpoint_with_no_prompt(app_client):
|
63 |
+
"""
|
64 |
+
Tests the output of the inference endpoint of the application
|
65 |
+
when a valid payload is provided but with no actual messages.
|
66 |
+
|
67 |
+
Given:
|
68 |
+
- Payload without any messages
|
69 |
+
When:
|
70 |
+
- POST Request sent to inference endpoint
|
71 |
+
Then:
|
72 |
+
- Expect no error and correct format
|
73 |
+
"""
|
74 |
+
response = app_client.post(
|
75 |
+
"/inference",
|
76 |
+
headers={
|
77 |
+
"Content-Type": "application/json",
|
78 |
+
},
|
79 |
+
json={
|
80 |
+
"messages": [],
|
81 |
+
}
|
82 |
+
)
|
83 |
+
|
84 |
+
assert response.status_code == 200
|
85 |
+
output = json.loads(response.content)
|
86 |
+
assert output == None
|
app/test/test_training_endpoint.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .fixture import app_client
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
|
5 |
+
def test_training_endpoint(app_client):
|
6 |
+
"""
|
7 |
+
Checks whether the training endpoint correctly receives, starts
|
8 |
+
and clears a training task instance.
|
9 |
+
|
10 |
+
Given:
|
11 |
+
- Launched training instance
|
12 |
+
|
13 |
+
When:
|
14 |
+
- State polled multiple times
|
15 |
+
|
16 |
+
Then:
|
17 |
+
- Expect state returned on first poll and instance gone on second poll
|
18 |
+
"""
|
19 |
+
response = app_client.post("/train/start")
|
20 |
+
assert response.status_code == 200
|
21 |
+
output : dict = json.loads(response.content)
|
22 |
+
assert len(output.keys()) == 1
|
23 |
+
assert output["message"] == "Model training was scheduled and will begin shortly."
|
24 |
+
|
25 |
+
time.sleep(5)
|
26 |
+
|
27 |
+
response = app_client.post("/train/get_state")
|
28 |
+
assert response.status_code == 200
|
29 |
+
output : dict = json.loads(response.content)
|
30 |
+
assert len(output.keys()) == 2
|
31 |
+
assert output["done"]
|
32 |
+
assert not output["error"]
|
33 |
+
|
34 |
+
time.sleep(1)
|
35 |
+
|
36 |
+
response = app_client.post("/train/get_state")
|
37 |
+
assert response.status_code == 200
|
38 |
+
output : dict = json.loads(response.content)
|
39 |
+
assert len(output.keys()) == 1
|
40 |
+
assert output["message"] == "No training instance running!"
|
docker-compose.test.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
services:
|
2 |
+
# Override parameters of this service
|
3 |
+
model_runner:
|
4 |
+
# Sets the entrypoint so that pytest is executed
|
5 |
+
entrypoint: ["pytest"]
|
docker-compose.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
services:
|
2 |
+
#
|
3 |
+
model_runner:
|
4 |
+
build:
|
5 |
+
context: .
|
6 |
+
dockerfile: Dockerfile
|
7 |
+
|
8 |
+
environment:
|
9 |
+
- APP_LISTEN_PORT=${APP_LISTEN_PORT}
|
10 |
+
- MLFLOW_ENDPOINT=${MLFLOW_ENDPOINT}
|
11 |
+
- HF_ACCESS_TOKEN=${HF_ACCESS_TOKEN}
|
12 |
+
|
13 |
+
container_name: mlrunner
|
14 |
+
restart: on-failure
|
15 |
+
ports:
|
16 |
+
- "${APP_LISTEN_PORT}:${APP_LISTEN_PORT}"
|
17 |
+
volumes:
|
18 |
+
- "./app:/app"
|
19 |
+
entrypoint: ["/usr/bin/python3", "/app/main.py"]
|
20 |
+
networks:
|
21 |
+
- airflow_tracking_network
|
22 |
+
|
23 |
+
networks:
|
24 |
+
airflow_tracking_network:
|
25 |
+
external: true
|