File size: 6,618 Bytes
75ec748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import json
import logging
import os
from datetime import datetime
from typing import Dict, List

from tqdm import tqdm

from src.model.model import Model
from src.task.task import Task, Tasktype
from src.task.task_factory import tasks_factory


class ModelEvaluator:
    """

    The model evaluator acts as a pipeline for evaluation models on tasks available from tasks_factory.

    """

    def __init__(self):
        self.last_predictions = {}

        self.last_metrics = {}

        self.last_model_name = None

    def compute_metrics(self) -> Dict:
        """

        Compute metrics over the last tested model's predictions,

        must have called one the evaluate functions before or loaded predictions with load_predictions_from_file.

        """
        metrics = []

        for task_dict in self.last_predictions["tasks"]:
            task_name, preds = list(task_dict.items())[0]
            if not preds:
                warning_message = f"Task '{task_name}' ignored due to no predictions"
                logging.warning(warning_message)
                continue
            try:
                tasks = tasks_factory([task_name])
                task = tasks[0]
                metric_score, warning = task.compute(preds)
            except Exception as e:
                error_message = f"Error while calculating metrics'{task_name}' : {e}"
                logging.error(error_message)
                continue
            metric_name = task.metric_name
            task_entry = {
                task_name: {
                    metric_name: {**metric_score, f"{metric_name}_warning": warning}
                }
            }
            metrics.append(task_entry)

        self.last_metrics = metrics
        metrics = self.last_predictions
        metrics["tasks"] = self.last_metrics
        self.last_metrics = metrics
        return metrics

    def load_predictions_from_file(self, file_path: str) -> None:
        """

        Load predictions from file to compute metrics :param file_path:path to the predictions file.

        """

        try:
            with open(file_path, "r", encoding="utf-8") as f:
                self.last_predictions = json.load(f)
        except FileNotFoundError:
            error = f"File not found: {file_path}"
            logging.error(error)
            self.last_predictions = None
        except json.JSONDecodeError:
            error = f"Invalid JSON in file: {file_path}"
            logging.error(error)
            self.last_predictions = None

    def save_metrics(self, save_path):
        """

        Saves computed metrics to a json file.

        :param save_path : the path to which the json file will be saved.

        """
        if self.last_metrics is None:
            logging.info("No metrics saved")
            return None
        return self.save_object(
            save_path,
            self.last_metrics,
            f"{self.last_model_name.replace('/', '_')}_metrics.json",
        )

    def evaluate(self, model: Model, tasks: List[Task]):
        """

        Evaluates a given model on the given tasks.

        :param model : the model that will infer on the given tasks.

        :param tasks : the tasks to be evaluated on.

        """
        return self.evaluate_subset(model, tasks)

    def evaluate_subset(

        self, model: Model, tasks: List[Task], subset_size=None

    ) -> Dict:
        """

        Evaluates a given model on the given tasks, but only on a given size.

        :param model : the model that will infer on the given tasks.

        :param tasks : the tasks to be evaluated on.

        :param subset_size : the size of the subset to be evaluated.

        """
        predictions = []
        for task in tqdm(tasks, desc="Evaluating model on tasks", total=len(tasks)):
            info_log = (
                f"-----Doing task '{task.task_name}' with model '{model.name}-----'."
            )
            logging.info(info_log)
            try:
                if subset_size is None:
                    prompts = task.dataset.prompts[:]
                else:
                    prompts = task.dataset.prompts[:subset_size]

                if task.task_type == Tasktype.INFERENCE:
                    task_predictions = model.infer(
                        prompts, task.dataset.possible_ground_truths
                    )
                elif task.task_type == Tasktype.GENERATIVE:
                    task_predictions = model.generate(prompts)
                else:
                    error_message = f"Unknown task type {task.task_type}"
                    logging.error(error_message)
                    task_predictions = None

                task_predictions = {task.task_name: task_predictions}
                predictions.append(task_predictions)

            except Exception as e:
                error_message = f"Task '{task.task_name}' has failed : {e}"
                logging.error(error_message)
                continue
        self.last_predictions = {
            "model_name": model.name,
            "model_url": f"https://huggingface.co/{model.name}",
            "tasks": predictions,
        }
        self.last_model_name = model.name
        return self.last_predictions

    def save_results(self, save_path):
        """

        Saves inferred metrics to a json file.

        :param save_path : the path to which the json file will be saved.

        """
        if self.last_model_name is None:
            logging.error("Please evaluate before saving results")
            return None
        date_time_stamp = datetime.now().strftime("%Y%m%d-%H%M")
        return self.save_object(
            save_path,
            self.last_predictions,
            f"{self.last_model_name.replace('/', '_')}_{date_time_stamp}.json",
        )

    def save_object(self, save_dir_path, saved_object, filename):
        """

        Utility method to save the given object into a json file.

        """
        os.makedirs(save_dir_path, exist_ok=True)
        full_path = os.path.join(save_dir_path, filename)
        try:
            with open(full_path, "w", encoding="utf-8") as f:
                json.dump(saved_object, f, indent=2)
            info_message = f"Results saved to {save_dir_path}"
            logging.info(info_message)
        except Exception as e:
            error_message = f"Failed to save object: {e}"
            logging.error(error_message)
        return full_path