File size: 5,171 Bytes
4737b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
import os
import plotly.express as px

# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.


def random_plot():
    df = px.data.iris()
    fig = px.scatter(
        df,
        x="sepal_width",
        y="sepal_length",
        color="species",
        size="petal_length",
        hover_data=["petal_width"],
    )
    return fig


def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)


def random_bokeh_plot():
    from bokeh.models import ColumnDataSource, Whisker
    from bokeh.plotting import figure
    from bokeh.sampledata.autompg2 import autompg2 as df
    from bokeh.transform import factor_cmap, jitter, factor_mark

    classes = list(sorted(df["class"].unique()))

    p = figure(
        height=400,
        x_range=classes,
        background_fill_color="#efefef",
        title="Car class vs HWY mpg with quintile ranges",
    )
    p.xgrid.grid_line_color = None

    g = df.groupby("class")
    upper = g.hwy.quantile(0.80)
    lower = g.hwy.quantile(0.20)
    source = ColumnDataSource(data=dict(base=classes, upper=upper, lower=lower))

    error = Whisker(
        base="base",
        upper="upper",
        lower="lower",
        source=source,
        level="annotation",
        line_width=2,
    )
    error.upper_head.size = 20
    error.lower_head.size = 20
    p.add_layout(error)

    p.circle(
        jitter("class", 0.3, range=p.x_range),
        "hwy",
        source=df,
        alpha=0.5,
        size=13,
        line_color="white",
        color=factor_cmap("class", "Light6", classes),
    )
    return p


def random_matplotlib_plot():
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt

    countries = ["USA", "Canada", "Mexico", "UK"]
    months = ["January", "February", "March", "April", "May"]
    m = months.index("January")
    r = 3.2
    start_day = 30 * m
    final_day = 30 * (m + 1)
    x = np.arange(start_day, final_day + 1)
    pop_count = {"USA": 350, "Canada": 40, "Mexico": 300, "UK": 120}
    df = pd.DataFrame({"day": x})
    for country in countries:
        df[country] = x ** (r) * (pop_count[country] + 1)

    fig = plt.figure()
    plt.plot(df["day"], df[countries].to_numpy())
    plt.title("Outbreak in " + "January")
    plt.ylabel("Cases")
    plt.xlabel("Days since Day 0")
    plt.legend(countries)
    return fig


def add_message(history, message):
    for x in message["files"]:
        history.append(((x,), None))
    if message["text"] is not None:
        history.append((message["text"], None))
    return history, gr.MultimodalTextbox(value=None, interactive=False)


def bot(history, response_type):
    if response_type == "plot":
        history[-1][1] = gr.Plot(random_plot())
    elif response_type == "bokeh_plot":
        history[-1][1] = gr.Plot(random_bokeh_plot())
    elif response_type == "matplotlib_plot":
        history[-1][1] = gr.Plot(random_matplotlib_plot())
    elif response_type == "gallery":
        history[-1][1] = gr.Gallery(
            [os.path.join("files", "avatar.png"), os.path.join("files", "avatar.png")]
        )
    elif response_type == "image":
        history[-1][1] = gr.Image(os.path.join("files", "avatar.png"))
    elif response_type == "video":
        history[-1][1] = gr.Video(os.path.join("files", "world.mp4"))
    elif response_type == "audio":
        history[-1][1] = gr.Audio(os.path.join("files", "audio.wav"))
    elif response_type == "audio_file":
        history[-1][1] = (os.path.join("files", "audio.wav"), "description")
    elif response_type == "image_file":
        history[-1][1] = (os.path.join("files", "avatar.png"), "description")
    elif response_type == "video_file":
        history[-1][1] = (os.path.join("files", "world.mp4"), "description")
    elif response_type == "txt_file":
        history[-1][1] = (os.path.join("files", "sample.txt"), "description")
    else:
        history[-1][1] = "Cool!"
    return history


fig = random_plot()

with gr.Blocks(fill_height=True) as demo:
    chatbot = gr.Chatbot(
        elem_id="chatbot",
        bubble_full_width=False,
        scale=1,
    )
    response_type = gr.Radio(
        [
            "audio_file",
            "image_file",
            "video_file",
            "txt_file",
            "plot",
            "matplotlib_plot",
            "bokeh_plot",
            "image",
            "text",
            "gallery",
            "video",
            "audio",
        ],
        value="text",
        label="Response Type",
    )

    chat_input = gr.MultimodalTextbox(
        interactive=True,
        placeholder="Enter message or upload file...",
        show_label=False,
    )

    chat_msg = chat_input.submit(
        add_message, [chatbot, chat_input], [chatbot, chat_input]
    )
    bot_msg = chat_msg.then(
        bot, [chatbot, response_type], chatbot, api_name="bot_response"
    )
    bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])

    chatbot.like(print_like_dislike, None, None)

demo.queue()
if __name__ == "__main__":
    demo.launch()