---
title: Proportio โ Precision Proportion Calculator
emoji: ๐งฎ
colorFrom: red
colorTo: gray
sdk: gradio
app_file: app.py
pinned: false
license: apache-2.0
tags:
- mcp-server
- proportion-calculator
- gradio
- python
- mathematics
- llm-tools
---
[](LICENSE)
[](https://python.org)
[](Dockerfile)
[](tests/)
[](https://modelcontextprotocol.io)
**Professional mathematical calculations for proportions, percentages, and scaling operations with assertion-based validation and MCP server integration.**
---
## ๐ฏ Overview
Proportio is a specialized mathematical calculation server designed for LLM agents and applications requiring precise proportion calculations. Built with **assertion-based validation** and **zero-tolerance error handling**, it provides reliable mathematical operations through both a web interface and Model Context Protocol (MCP) integration.
### Key Use Cases
- **Recipe Scaling**: Scale ingredient quantities for different serving sizes
- **Financial Calculations**: Calculate percentages, ratios, and proportional growth
- **Engineering**: Resize dimensions, scale measurements, and maintain proportional relationships
- **Data Analysis**: Compute percentages, ratios, and proportional transformations
- **LLM Integration**: Provide reliable mathematical operations through MCP protocol
---
https://github.com/user-attachments/assets/96d30b20-1bf0-4b2b-a1ea-d0a5776f547c
---
## โจ Features
### ๐ข Mathematical Functions
- **Percentage Calculations** - Convert parts to percentages with precision
- **Proportion Solving** - Solve missing terms in a/b = c/d relationships
- **Ratio Scaling** - Scale values by precise ratios
- **Proportionality Constants** - Find k in y = kx relationships
- **Dimension Resizing** - Uniform scaling of width/height pairs
### ๐ก๏ธ Validation Architecture
- **Assertion-Based Validation** - Explicit mathematical preconditions
- **Zero Exception Handling** - No try-catch blocks, fast failure detection
- **Precise Error Messages** - Clear, actionable error descriptions
- **Type Safety** - Robust input validation and type checking
### ๐ Integration Options
- **Web Interface** - Professional Gradio-based UI with custom branding
- **MCP Server** - Native Model Context Protocol support for LLM agents
- **Docker Ready** - Containerized deployment with security best practices
- **API Access** - Direct function calls with comprehensive documentation
### ๐จ Professional Design
- **Custom Branding** - Red-black-white theme with geometric logo
- **Responsive Layout** - Optimized for desktop and mobile devices
- **Split Results** - Clear separation of input/output sections
- **Error Handling** - User-friendly error messages and validation
---
## ๐ Table of Contents
- [๐ฏ Overview](#-overview)
- [โจ Features](#-features)
- [๐ Quick Start](#-quick-start)
- [๐ง Core Functions](#-core-functions)
- [๐๏ธ Architecture](#๏ธ-architecture)
- [๐ฆ Installation](#-installation)
- [๐ณ Docker Deployment](#-docker-deployment)
- [๐งช Testing](#-testing)
- [๐ MCP Integration](#-mcp-integration)
- [๐ API Reference](#-api-reference)
- [๐ ๏ธ Development](#๏ธ-development)
- [๐ License](#-license)
---
## ๐ Quick Start
### Using Docker (Recommended)
```bash
# Clone the repository
git clone https://github.com/leksval/proportio.git
cd proportio
# Build and run with Docker
docker build -t proportio-server .
docker run -p 7860:7860 proportio-server
# Access the web interface
open http://localhost:7860
```
### Local Development
```bash
# Install dependencies
pip install -r requirements.txt
# Run the server
python proportion_server.py
# Access the web interface
open http://localhost:7860
```
### Quick Function Examples
```python
from proportion_server import percent_of, solve_proportion, resize_dimensions
# Calculate percentage
result = percent_of(25, 100) # Returns: 25.0
# Solve proportion: 3/4 = 6/?
result = solve_proportion(3, 4, 6, None) # Returns: 8.0
# Resize dimensions by 2x
width, height = resize_dimensions(100, 50, 2.0) # Returns: (200.0, 100.0)
```
---
## ๐ง Core Functions
### 1. **`percent_of(part, whole)`**
Calculate what percentage the part is of the whole.
```python
percent_of(25, 100) # โ 25.0%
percent_of(3, 4) # โ 75.0%
percent_of(150, 100) # โ 150.0%
```
**Mathematical Preconditions:**
- `whole != 0` (division by zero protection)
**Real-world Examples:**
- Sales conversion rates
- Test score percentages
- Growth rate calculations
### 2. **`solve_proportion(a, b, c, d)`**
Solve missing term in proportion a/b = c/d (exactly one parameter must be None).
```python
solve_proportion(3, 4, 6, None) # โ 8.0 (3/4 = 6/8)
solve_proportion(None, 4, 6, 8) # โ 3.0 (?/4 = 6/8)
solve_proportion(2, None, 6, 9) # โ 3.0 (2/? = 6/9)
```
**Mathematical Preconditions:**
- Exactly one value must be None (missing)
- Division denominators != 0 (varies by missing value)
**Real-world Examples:**
- Recipe scaling (4 servings : 2 cups = 6 servings : ? cups)
- Currency exchange rates
- Map scale calculations
### 3. **`scale_by_ratio(value, ratio)`**
Scale a value by a given ratio.
```python
scale_by_ratio(100, 1.5) # โ 150.0
scale_by_ratio(200, 0.5) # โ 100.0
scale_by_ratio(50, 2.0) # โ 100.0
```
**Use Cases:**
- Applying discount percentages
- Scaling measurements
- Financial calculations
### 4. **`direct_k(x, y)`**
Find proportionality constant k in direct variation y = kx.
```python
direct_k(5, 15) # โ 3.0 (15 = 3 ร 5)
direct_k(4, 12) # โ 3.0 (12 = 3 ร 4)
direct_k(2, 7) # โ 3.5 (7 = 3.5 ร 2)
```
**Mathematical Preconditions:**
- `x != 0` (division by zero protection)
**Applications:**
- Physics calculations (force = k ร displacement)
- Economics (cost = k ร quantity)
- Engineering (stress = k ร strain)
### 5. **`resize_dimensions(width, height, scale)`**
Resize dimensions with uniform scale factor.
```python
resize_dimensions(100, 50, 2.0) # โ (200.0, 100.0)
resize_dimensions(200, 100, 0.5) # โ (100.0, 50.0)
resize_dimensions(150, 75, 1.5) # โ (225.0, 112.5)
```
**Mathematical Preconditions:**
- `width >= 0` (dimensions must be non-negative)
- `height >= 0` (dimensions must be non-negative)
- `scale > 0` (scale factor must be positive)
**Applications:**
- Image resizing
- Screen resolution scaling
- Architectural drawings
---
## ๐๏ธ Architecture
### Assertion-Based Validation
Proportio uses **assertion-based validation** throughout, providing several key advantages:
```python
def percent_of(part: float, whole: float) -> float:
# Mathematical preconditions
assert whole != 0, "Division by zero: whole cannot be zero"
# Direct calculation
percentage = (part / whole) * 100
return percentage
```
**Benefits:**
- **Fast Failure**: Immediate error detection with precise messages
- **No Exception Overhead**: Zero try-catch complexity
- **Clear Preconditions**: Mathematical requirements explicitly documented
- **Predictable Behavior**: Consistent error handling across all functions
### Project Structure
```
proportio/
โโโ proportion_server.py # Core mathematical functions + Gradio server
โโโ models.py # Pydantic data models (simplified)
โโโ config.py # Configuration and logging setup
โโโ styles.css # Custom branding and responsive design
โโโ tests/
โ โโโ test_tools.py # Comprehensive test suite (58 tests)
โโโ requirements.txt # Minimal dependencies (3 packages)
โโโ Dockerfile # Single-stage containerization
โโโ README.md # This documentation
```
### Dependency Architecture
**Streamlined Dependencies** (only 3 required):
- **`gradio[mcp]>=5.0.0`** - Web framework with MCP server capabilities
- **`pydantic>=2.8.0`** - Data validation and parsing
- **`pytest>=8.0.0`** - Testing framework
### Error Handling Philosophy
**No Try-Catch Blocks** - All validation done through assertions:
```python
# โ Old approach (complex exception handling)
try:
if whole == 0:
raise ValueError("Division by zero")
result = part / whole
except ValueError as e:
# Handle error...
# โ
New approach (assertion-based)
assert whole != 0, "Division by zero: whole cannot be zero"
result = part / whole
```
---
## ๐ฆ Installation
### System Requirements
- **Python 3.11+**
- **pip** package manager
- **Docker** (optional, for containerized deployment)
### Local Installation
```bash
# Clone repository
git clone https://github.com/leksval/proportio.git
cd proportio
# Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Verify installation
python -c "from proportion_server import percent_of; print(percent_of(25, 100))"
```
### Development Installation
```bash
# Install with development dependencies
pip install -r requirements.txt
# Run tests to verify setup
python -m pytest tests/test_tools.py -v
# Start development server
python proportion_server.py
```
---
## ๐ณ Docker Deployment
### Building the Container
```bash
# Build image
docker build -t proportio-server .
# Run container
docker run -p 7860:7860 proportio-server
# Run with custom configuration
docker run -p 8080:7860 -e PORT=7860 proportio-server
```
### Container Features
- **Security**: Non-root user execution
- **Optimization**: Single-stage build for minimal image size
- **Flexibility**: Configurable port and environment settings
- **Health**: Automatic process management
### Production Deployment
```bash
# Run detached with restart policy
docker run -d \
--name proportio \
--restart unless-stopped \
-p 7860:7860 \
proportio-server
# View logs
docker logs proportio
# Stop container
docker stop proportio
```
---
## ๐งช Testing
### Test Suite Coverage
**58 comprehensive tests** covering:
- โ
Basic functionality for all 5 core functions
- โ
Edge cases and boundary conditions
- โ
Error handling and assertion validation
- โ
Integration workflows and chained calculations
- โ
Floating-point precision and mathematical accuracy
- โ
Type validation and input sanitization
### Running Tests
```bash
# Run all tests
python -m pytest tests/test_tools.py -v
# Run specific test class
python -m pytest tests/test_tools.py::TestPercentOf -v
# Run with coverage (if pytest-cov installed)
python -m pytest tests/test_tools.py --cov=proportion_server
# Run tests in Docker
docker run --rm proportio-server python -m pytest tests/test_tools.py -v
```
### Test Categories
#### **Unit Tests**
- Individual function validation
- Mathematical accuracy verification
- Error condition testing
#### **Integration Tests**
- Chained calculation workflows
- Real-world scenario testing
- Cross-function compatibility
#### **Edge Case Tests**
- Floating-point precision limits
- Very large and very small numbers
- Boundary condition validation
### Sample Test Output
```
==================== test session starts ====================
collected 58 items
tests/test_tools.py::TestPercentOf::test_basic_percentage PASSED
tests/test_tools.py::TestPercentOf::test_zero_part PASSED
tests/test_tools.py::TestPercentOf::test_negative_values PASSED
...
tests/test_tools.py::TestIntegration::test_real_world_recipe_scaling PASSED
tests/test_tools.py::TestIntegration::test_financial_calculation_workflow PASSED
==================== 58 passed in 0.45s ====================
```
---
## ๐ MCP Integration
### Model Context Protocol Support
Proportio provides native **MCP server capabilities** for seamless LLM integration:
```python
# Launch with MCP support
demo.launch(
server_name="0.0.0.0",
server_port=7860,
mcp_server=True, # Enable MCP functionality
show_error=True
)
```
### Using with LLM Agents
The MCP server exposes all mathematical functions as tools that LLMs can call directly:
**Available MCP Tools:**
- `percent_of` - Calculate percentage relationships
- `solve_proportion` - Solve missing proportion terms
- `scale_by_ratio` - Apply scaling ratios
- `direct_k` - Find proportionality constants
- `resize_dimensions` - Scale dimensional pairs
### MCP Connection Example
```json
{
"name": "proportio",
"type": "sse",
"url": "http://localhost:7860/mcp"
}
```
### Integration Benefits
- **Reliable Math**: LLMs can delegate complex calculations
- **Error Handling**: Clear error messages for invalid inputs
- **Type Safety**: Automatic input validation and conversion
- **Performance**: Fast, direct mathematical operations
---
## ๐ API Reference
### Function Signatures
```python
def percent_of(part: float, whole: float) -> float:
"""Calculate percentage that part is of whole."""
def solve_proportion(
a: Optional[float] = None,
b: Optional[float] = None,
c: Optional[float] = None,
d: Optional[float] = None
) -> float:
"""Solve missing term in proportion a/b = c/d."""
def scale_by_ratio(value: float, ratio: float) -> float:
"""Scale value by given ratio."""
def direct_k(x: float, y: float) -> float:
"""Find proportionality constant k where y = kx."""
def resize_dimensions(width: float, height: float, scale: float) -> Tuple[float, float]:
"""Resize dimensions with uniform scale factor."""
```
### Error Messages
All functions provide clear, actionable error messages:
```python
# Division by zero errors
"Division by zero: whole cannot be zero"
"Division by zero: x cannot be zero"
"Division by zero: denominator"
# Validation errors
"Exactly one value must be None"
"Width must be non-negative"
"Height must be non-negative"
"Scale factor must be positive"
```
### Return Types
- **Single Values**: `float` for mathematical results
- **Dimension Pairs**: `Tuple[float, float]` for width/height
- **Errors**: `AssertionError` with descriptive messages
---
## ๐ ๏ธ Development
### Project Philosophy
1. **Assertion-Based Validation** - No try-catch complexity
2. **Mathematical Precision** - Accurate calculations with clear preconditions
3. **Minimal Dependencies** - Only essential packages
4. **Comprehensive Testing** - High test coverage with edge cases
5. **Professional Design** - Clean, branded user interface
### Code Style
```python
# Clear function signatures with type hints
def function_name(param: Type) -> ReturnType:
"""
Brief description.
Args:
param: Parameter description
Returns:
Return value description
Mathematical preconditions:
- Explicit constraint documentation
"""
# Assertion-based validation
assert condition, "Clear error message"
# Direct calculation
result = calculation
# Optional logging
logger.debug(f"Operation completed: {result}")
return result
```
### Adding New Functions
1. **Implement Core Logic** - Add function to `proportion_server.py`
2. **Add Mathematical Preconditions** - Document constraints explicitly
3. **Create Demo Function** - Add Gradio interface wrapper
4. **Write Comprehensive Tests** - Cover all edge cases
5. **Update Documentation** - Add examples and use cases
### Contributing Guidelines
1. **Fork the Repository** - Create your feature branch
2. **Follow Code Style** - Use assertion-based validation
3. **Add Tests** - Ensure comprehensive test coverage
4. **Update Documentation** - Keep README current
5. **Submit Pull Request** - Include description of changes
---
## ๐ License
This project is licensed under the **Apache License 2.0** - see the [LICENSE](LICENSE) file for details.
### Key License Points
- โ
**Commercial Use** - Use in commercial applications
- โ
**Modification** - Modify and distribute changes
- โ
**Distribution** - Distribute original or modified versions
- โ
**Patent Use** - Grant of patent rights from contributors
- โ ๏ธ **Attribution** - Must include license and copyright notice
- โ ๏ธ **State Changes** - Must document modifications
---
## ๐ค Support
### Getting Help
- **Issues**: [GitHub Issues](https://github.com/leksval/proportio/issues)
- **Documentation**: This README and inline code documentation
- **Examples**: See `tests/test_tools.py` for usage examples
### Contributing
We welcome contributions! Please see the [Development](#๏ธ-development) section for guidelines.
### Reporting Bugs
When reporting bugs, please include:
1. **Environment Details** (Python version, OS, Docker version)
2. **Reproduction Steps** (minimal code example)
3. **Expected vs Actual Behavior**
4. **Error Messages** (full stack trace if applicable)
---
**Built with โค๏ธ for mathematical precision and LLM integration**
*Proportio - Where Mathematics Meets Reliability*