Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
A model worker executes the model.
|
| 3 |
+
"""
|
| 4 |
+
import argparse
|
| 5 |
+
import json
|
| 6 |
+
import uuid
|
| 7 |
+
|
| 8 |
+
from fastapi import FastAPI, Request
|
| 9 |
+
from fastapi.responses import StreamingResponse
|
| 10 |
+
from transformers import AutoModel, AutoTokenizer
|
| 11 |
+
import torch
|
| 12 |
+
import uvicorn
|
| 13 |
+
|
| 14 |
+
from transformers.generation.streamers import BaseStreamer
|
| 15 |
+
from threading import Thread
|
| 16 |
+
from queue import Queue
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class TokenStreamer(BaseStreamer):
|
| 20 |
+
def __init__(self, skip_prompt: bool = False, timeout=None):
|
| 21 |
+
self.skip_prompt = skip_prompt
|
| 22 |
+
|
| 23 |
+
# variables used in the streaming process
|
| 24 |
+
self.token_queue = Queue()
|
| 25 |
+
self.stop_signal = None
|
| 26 |
+
self.next_tokens_are_prompt = True
|
| 27 |
+
self.timeout = timeout
|
| 28 |
+
|
| 29 |
+
def put(self, value):
|
| 30 |
+
if len(value.shape) > 1 and value.shape[0] > 1:
|
| 31 |
+
raise ValueError("TextStreamer only supports batch size 1")
|
| 32 |
+
elif len(value.shape) > 1:
|
| 33 |
+
value = value[0]
|
| 34 |
+
|
| 35 |
+
if self.skip_prompt and self.next_tokens_are_prompt:
|
| 36 |
+
self.next_tokens_are_prompt = False
|
| 37 |
+
return
|
| 38 |
+
|
| 39 |
+
for token in value.tolist():
|
| 40 |
+
self.token_queue.put(token)
|
| 41 |
+
|
| 42 |
+
def end(self):
|
| 43 |
+
self.token_queue.put(self.stop_signal)
|
| 44 |
+
|
| 45 |
+
def __iter__(self):
|
| 46 |
+
return self
|
| 47 |
+
|
| 48 |
+
def __next__(self):
|
| 49 |
+
value = self.token_queue.get(timeout=self.timeout)
|
| 50 |
+
if value == self.stop_signal:
|
| 51 |
+
raise StopIteration()
|
| 52 |
+
else:
|
| 53 |
+
return value
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class ModelWorker:
|
| 57 |
+
def __init__(self, model_path, device='cuda'):
|
| 58 |
+
self.device = device
|
| 59 |
+
self.glm_model = AutoModel.from_pretrained(model_path, trust_remote_code=True,
|
| 60 |
+
device=device).to(device).eval()
|
| 61 |
+
self.glm_tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 62 |
+
|
| 63 |
+
@torch.inference_mode()
|
| 64 |
+
def generate_stream(self, params):
|
| 65 |
+
tokenizer, model = self.glm_tokenizer, self.glm_model
|
| 66 |
+
|
| 67 |
+
prompt = params["prompt"]
|
| 68 |
+
|
| 69 |
+
temperature = float(params.get("temperature", 1.0))
|
| 70 |
+
top_p = float(params.get("top_p", 1.0))
|
| 71 |
+
max_new_tokens = int(params.get("max_new_tokens", 256))
|
| 72 |
+
|
| 73 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
| 74 |
+
inputs = inputs.to(self.device)
|
| 75 |
+
streamer = TokenStreamer(skip_prompt=True)
|
| 76 |
+
thread = Thread(target=model.generate,
|
| 77 |
+
kwargs=dict(**inputs, max_new_tokens=int(max_new_tokens),
|
| 78 |
+
temperature=float(temperature), top_p=float(top_p),
|
| 79 |
+
streamer=streamer))
|
| 80 |
+
thread.start()
|
| 81 |
+
for token_id in streamer:
|
| 82 |
+
yield (json.dumps({"token_id": token_id, "error_code": 0}) + "\n").encode()
|
| 83 |
+
|
| 84 |
+
def generate_stream_gate(self, params):
|
| 85 |
+
try:
|
| 86 |
+
for x in self.generate_stream(params):
|
| 87 |
+
yield x
|
| 88 |
+
except Exception as e:
|
| 89 |
+
print("Caught Unknown Error", e)
|
| 90 |
+
ret = {
|
| 91 |
+
"text": "Server Error",
|
| 92 |
+
"error_code": 1,
|
| 93 |
+
}
|
| 94 |
+
yield (json.dumps(ret)+ "\n").encode()
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
app = FastAPI()
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
@app.post("/generate_stream")
|
| 101 |
+
async def generate_stream(request: Request):
|
| 102 |
+
params = await request.json()
|
| 103 |
+
|
| 104 |
+
generator = worker.generate_stream_gate(params)
|
| 105 |
+
return StreamingResponse(generator)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
if __name__ == "__main__":
|
| 109 |
+
parser = argparse.ArgumentParser()
|
| 110 |
+
parser.add_argument("--host", type=str, default="localhost")
|
| 111 |
+
parser.add_argument("--port", type=int, default=10000)
|
| 112 |
+
parser.add_argument("--model-path", type=str, default="THUDM/glm-4-voice-9b")
|
| 113 |
+
args = parser.parse_args()
|
| 114 |
+
|
| 115 |
+
worker = ModelWorker(args.model_path)
|
| 116 |
+
uvicorn.run(app, host=args.host, port=args.port, log_level="info")
|