Spaces:
Running
Running
import gradio as gr | |
import sqlite3 | |
import pandas as pd | |
import json | |
import os | |
import tempfile | |
from huggingface_hub import hf_hub_download, HfApi | |
from huggingface_hub.utils import EntryNotFoundError | |
# Configuration | |
LOCAL_DB_PATH = "data/health_data.db" | |
LOCAL_XML_PATH = "data/export.xml" | |
DATA_REPO = os.getenv("DATA_REPO", None) # e.g., "username/project-data" | |
IS_HF_SPACE = os.getenv("SPACE_ID") is not None | |
HF_TOKEN = os.getenv("HF_TOKEN", None) # Space secret for write access | |
def check_and_parse_if_needed(): | |
"""Check if database exists and parse XML if not (both HF and local).""" | |
if IS_HF_SPACE and DATA_REPO: | |
# HF Spaces mode | |
print(f"Checking if database exists in {DATA_REPO}...") | |
api = HfApi(token=HF_TOKEN) | |
try: | |
# Try to download the database | |
db_path = hf_hub_download( | |
repo_id=DATA_REPO, | |
filename="health_data.db", | |
repo_type="dataset", | |
token=HF_TOKEN | |
) | |
print("Database already exists in dataset.") | |
return | |
except (EntryNotFoundError, Exception) as e: | |
print(f"Database not found, will parse export.xml: {str(e)}") | |
try: | |
# Download export.xml | |
print("Downloading export.xml...") | |
xml_path = hf_hub_download( | |
repo_id=DATA_REPO, | |
filename="export.xml", | |
repo_type="dataset", | |
token=HF_TOKEN | |
) | |
# Parse the XML file | |
print("Parsing export.xml...") | |
from src.parser.parser import AppleHealthParser | |
with tempfile.TemporaryDirectory() as temp_dir: | |
db_path = os.path.join(temp_dir, "health_data.db") | |
# Parse with default date cutoff (6 months) | |
parser = AppleHealthParser(db_path=db_path) | |
parser.parse_file(xml_path) | |
print("Uploading parsed database to dataset...") | |
# Upload the database back to the dataset | |
api.upload_file( | |
path_or_fileobj=db_path, | |
path_in_repo="health_data.db", | |
repo_id=DATA_REPO, | |
repo_type="dataset", | |
token=HF_TOKEN, | |
commit_message="Add parsed SQLite database from export.xml" | |
) | |
print("Successfully created and uploaded health_data.db") | |
except Exception as e: | |
print(f"Error during HF parsing: {str(e)}") | |
raise | |
else: | |
# Local mode | |
print(f"Checking if local database exists at {LOCAL_DB_PATH}...") | |
if os.path.exists(LOCAL_DB_PATH): | |
print("Local database already exists.") | |
return | |
if not os.path.exists(LOCAL_XML_PATH): | |
print(f"Warning: Neither database ({LOCAL_DB_PATH}) nor XML file ({LOCAL_XML_PATH}) found.") | |
return | |
try: | |
print(f"Parsing local export.xml at {LOCAL_XML_PATH}...") | |
from src.parser.parser import AppleHealthParser | |
# Create data directory if it doesn't exist | |
os.makedirs(os.path.dirname(LOCAL_DB_PATH), exist_ok=True) | |
# Parse with default date cutoff (6 months) | |
parser = AppleHealthParser(db_path=LOCAL_DB_PATH) | |
parser.parse_file(LOCAL_XML_PATH) | |
print(f"Successfully created local database at {LOCAL_DB_PATH}") | |
except Exception as e: | |
print(f"Error during local parsing: {str(e)}") | |
raise | |
def get_db_connection(): | |
"""Get a connection to the SQLite database.""" | |
if DATA_REPO and IS_HF_SPACE: | |
# Running in HF Spaces - download from private dataset | |
try: | |
db_path = hf_hub_download( | |
repo_id=DATA_REPO, | |
filename="health_data.db", | |
repo_type="dataset", | |
token=HF_TOKEN | |
) | |
return sqlite3.connect(db_path) | |
except Exception as e: | |
raise Exception(f"Failed to download database from {DATA_REPO}: {str(e)}") | |
else: | |
# Local development mode | |
if not os.path.exists(LOCAL_DB_PATH): | |
raise FileNotFoundError(f"Database file not found: {LOCAL_DB_PATH}. Try restarting the server to trigger auto-parsing.") | |
return sqlite3.connect(LOCAL_DB_PATH) | |
def execute_sql_query(sql_query): | |
"""Execute any SQL query on the Apple Health SQLite database. | |
Args: | |
sql_query (str): The SQL query to execute | |
hf_token (str): Hugging Face token for accessing private dataset | |
Returns: | |
str: JSON formatted results or error message | |
""" | |
if not sql_query or not sql_query.strip(): | |
return "Error: Empty SQL query provided" | |
try: | |
conn = get_db_connection() | |
# Execute the query | |
result = pd.read_sql_query(sql_query, conn) | |
conn.close() | |
# Convert to JSON | |
return json.dumps(result.to_dict('records'), indent=2) | |
except Exception as e: | |
return f"Error executing SQL query: {str(e)}" | |
# Run one-time parsing check when server starts | |
try: | |
check_and_parse_if_needed() | |
except Exception as e: | |
print(f"Warning: Could not check/parse database: {str(e)}") | |
# MCP Server Interface | |
with gr.Blocks(title="Apple Health MCP Server") as demo: | |
if IS_HF_SPACE and DATA_REPO: | |
gr.Markdown("# Apple Health MCP Server") | |
gr.Markdown(f"This is an MCP server for querying Apple Health data from dataset: `{DATA_REPO}`") | |
else: | |
gr.Markdown("# Apple Health MCP Server (Local Development)") | |
gr.Markdown(f"Database: `{LOCAL_DB_PATH}`") | |
with gr.Tab("SQL Query Interface"): | |
gr.Markdown("### Execute SQL Queries") | |
gr.Markdown("Enter any SQL query to execute against your Apple Health SQLite database.") | |
sql_input = gr.Textbox( | |
label="SQL Query", | |
placeholder="SELECT * FROM activity_summaries LIMIT 10;", | |
lines=5, | |
value="SELECT name FROM sqlite_master WHERE type='table';", | |
info="Available tables depend on your export data. Run the first sample query to see all tables." | |
) | |
query_btn = gr.Button("Execute Query", variant="primary") | |
output = gr.Code(language="json", label="Query Results") | |
# Sample queries for easy testing | |
gr.Markdown("### Sample Queries") | |
gr.Examples( | |
examples=[ | |
["SELECT name FROM sqlite_master WHERE type='table';"], | |
["SELECT * FROM activitysummary LIMIT 5;"], | |
["SELECT * FROM healthdata;"], | |
["SELECT date_components, active_energy_burned, apple_exercise_time FROM activitysummary ORDER BY date_components DESC LIMIT 10;"], | |
["SELECT COUNT(*) as count, type FROM record GROUP BY type ORDER BY count DESC LIMIT 10;"], | |
["SELECT * FROM workout LIMIT 5;"], | |
["SELECT type, value, unit, date(start_date) as date FROM record WHERE type LIKE '%HeartRate%' ORDER BY start_date DESC LIMIT 10;"] | |
], | |
inputs=sql_input | |
) | |
query_btn.click( | |
fn=execute_sql_query, | |
inputs=[sql_input], | |
outputs=output | |
) | |
with gr.Tab("MCP Endpoint"): | |
if IS_HF_SPACE: | |
space_id = os.getenv("SPACE_ID", "your-space-id") | |
gr.Markdown(f""" | |
## MCP Server Endpoint | |
This space can be used as an MCP server with the following configuration: | |
```json | |
{{ | |
"mcpServers": {{ | |
"apple-health": {{ | |
"command": "npx", | |
"args": [ | |
"mcp-remote", | |
"https://huggingface.co/spaces/{space_id}/gradio_api/mcp/sse", | |
"--header", | |
"Authorization:${{AUTH_HEADER}}" | |
], | |
"env": {{ | |
"AUTH_HEADER": "Bearer YOUR_HF_TOKEN_HERE" | |
}} | |
}} | |
}} | |
}} | |
``` | |
**Setup Instructions:** | |
1. Replace `YOUR_HF_TOKEN_HERE` with your actual Hugging Face token | |
2. Add this configuration to your Claude Desktop config file | |
3. Claude will be able to query your Apple Health data using SQL | |
""") | |
else: | |
gr.Markdown(""" | |
## MCP Server Endpoint | |
This local server can be used as an MCP server with the following configuration: | |
```json | |
{ | |
"mcpServers": { | |
"apple-health-local": { | |
"command": "npx", | |
"args": [ | |
"mcp-remote", | |
"http://localhost:7860/gradio_api/mcp/sse" | |
] | |
} | |
} | |
} | |
``` | |
**Setup Instructions:** | |
1. Run this server: `python mcp_server.py` | |
2. Add the above configuration to your Claude Desktop config file | |
3. Claude will be able to query your Apple Health data using SQL | |
**Note:** This is a local development server. No authentication is required. | |
""") | |
if __name__ == "__main__": | |
if IS_HF_SPACE: | |
print(f"Starting Apple Health MCP Server in HF Spaces mode") | |
if DATA_REPO: | |
print(f"Data repository: {DATA_REPO}") | |
else: | |
print("Warning: DATA_REPO environment variable not set") | |
else: | |
print(f"Starting Apple Health MCP Server (Local Development)") | |
print(f"Database path: {LOCAL_DB_PATH}") | |
demo.launch(mcp_server=True, server_name="0.0.0.0" if not IS_HF_SPACE else None) |