|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import datetime |
|
import json |
|
import os |
|
import sys |
|
import time |
|
|
|
import numpy as np |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
import torch.distributed as dist |
|
import torchvision.datasets as datasets |
|
import torchvision.transforms as transforms |
|
import utils |
|
import utils.misc as misc |
|
from models.croco_downstream import CroCoDownstreamBinocular, croco_args_from_ckpt |
|
from models.head_downstream import PixelwiseTaskWithDPT |
|
from models.pos_embed import interpolate_pos_embed |
|
from stereoflow.criterion import * |
|
from stereoflow.datasets_flow import get_test_datasets_flow, get_train_dataset_flow |
|
from stereoflow.datasets_stereo import ( |
|
get_test_datasets_stereo, |
|
get_train_dataset_stereo, |
|
) |
|
from stereoflow.engine import train_one_epoch, validate_one_epoch |
|
from torch.utils.data import DataLoader |
|
from torch.utils.tensorboard import SummaryWriter |
|
from utils.misc import NativeScalerWithGradNormCount as NativeScaler |
|
|
|
|
|
def get_args_parser(): |
|
|
|
parser = argparse.ArgumentParser( |
|
"Finetuning CroCo models on stereo or flow", add_help=False |
|
) |
|
subparsers = parser.add_subparsers( |
|
title="Task (stereo or flow)", dest="task", required=True |
|
) |
|
parser_stereo = subparsers.add_parser("stereo", help="Training stereo model") |
|
parser_flow = subparsers.add_parser("flow", help="Training flow model") |
|
|
|
def add_arg( |
|
name_or_flags, default=None, default_stereo=None, default_flow=None, **kwargs |
|
): |
|
if default is not None: |
|
assert ( |
|
default_stereo is None and default_flow is None |
|
), "setting default makes default_stereo and default_flow disabled" |
|
parser_stereo.add_argument( |
|
name_or_flags, |
|
default=default if default is not None else default_stereo, |
|
**kwargs, |
|
) |
|
parser_flow.add_argument( |
|
name_or_flags, |
|
default=default if default is not None else default_flow, |
|
**kwargs, |
|
) |
|
|
|
|
|
add_arg( |
|
"--output_dir", |
|
required=True, |
|
type=str, |
|
help="path where to save, if empty, automatically created", |
|
) |
|
|
|
add_arg( |
|
"--crop", |
|
type=int, |
|
nargs="+", |
|
default_stereo=[352, 704], |
|
default_flow=[320, 384], |
|
help="size of the random image crops used during training.", |
|
) |
|
add_arg( |
|
"--pretrained", |
|
required=True, |
|
type=str, |
|
help="Load pretrained model (required as croco arguments come from there)", |
|
) |
|
|
|
add_arg( |
|
"--criterion", |
|
default_stereo="LaplacianLossBounded2()", |
|
default_flow="LaplacianLossBounded()", |
|
type=str, |
|
help="string to evaluate to get criterion", |
|
) |
|
add_arg("--bestmetric", default_stereo="avgerr", default_flow="EPE", type=str) |
|
|
|
add_arg("--dataset", type=str, required=True, help="training set") |
|
|
|
add_arg("--seed", default=0, type=int, help="seed") |
|
add_arg( |
|
"--batch_size", |
|
default_stereo=6, |
|
default_flow=8, |
|
type=int, |
|
help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus", |
|
) |
|
add_arg("--epochs", default=32, type=int, help="number of training epochs") |
|
add_arg( |
|
"--img_per_epoch", |
|
type=int, |
|
default=None, |
|
help="Fix the number of images seen in an epoch (None means use all training pairs)", |
|
) |
|
add_arg( |
|
"--accum_iter", |
|
default=1, |
|
type=int, |
|
help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)", |
|
) |
|
add_arg( |
|
"--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)" |
|
) |
|
add_arg( |
|
"--lr", |
|
type=float, |
|
default_stereo=3e-5, |
|
default_flow=2e-5, |
|
metavar="LR", |
|
help="learning rate (absolute lr)", |
|
) |
|
add_arg( |
|
"--min_lr", |
|
type=float, |
|
default=0.0, |
|
metavar="LR", |
|
help="lower lr bound for cyclic schedulers that hit 0", |
|
) |
|
add_arg( |
|
"--warmup_epochs", type=int, default=1, metavar="N", help="epochs to warmup LR" |
|
) |
|
add_arg( |
|
"--optimizer", |
|
default="AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))", |
|
type=str, |
|
help="Optimizer from torch.optim [ default: AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) ]", |
|
) |
|
add_arg( |
|
"--amp", |
|
default=0, |
|
type=int, |
|
choices=[0, 1], |
|
help="enable automatic mixed precision training", |
|
) |
|
|
|
add_arg( |
|
"--val_dataset", |
|
type=str, |
|
default="", |
|
help="Validation sets, multiple separated by + (empty string means that no validation is performed)", |
|
) |
|
add_arg( |
|
"--tile_conf_mode", |
|
type=str, |
|
default_stereo="conf_expsigmoid_15_3", |
|
default_flow="conf_expsigmoid_10_5", |
|
help="Weights for tile aggregation", |
|
) |
|
add_arg( |
|
"--val_overlap", default=0.7, type=float, help="Overlap value for the tiling" |
|
) |
|
|
|
add_arg("--num_workers", default=8, type=int) |
|
add_arg("--eval_every", type=int, default=1, help="Val loss evaluation frequency") |
|
add_arg("--save_every", type=int, default=1, help="Save checkpoint frequency") |
|
add_arg( |
|
"--start_from", |
|
type=str, |
|
default=None, |
|
help="Start training using weights from an other model (eg for finetuning)", |
|
) |
|
add_arg( |
|
"--tboard_log_step", |
|
type=int, |
|
default=100, |
|
help="Log to tboard every so many steps", |
|
) |
|
add_arg( |
|
"--dist_url", default="env://", help="url used to set up distributed training" |
|
) |
|
|
|
return parser |
|
|
|
|
|
def main(args): |
|
misc.init_distributed_mode(args) |
|
global_rank = misc.get_rank() |
|
num_tasks = misc.get_world_size() |
|
|
|
assert os.path.isfile(args.pretrained) |
|
print("output_dir: " + args.output_dir) |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
|
|
seed = args.seed + misc.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
cudnn.benchmark = True |
|
|
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
metrics = (StereoMetrics if args.task == "stereo" else FlowMetrics)().to(device) |
|
criterion = eval(args.criterion).to(device) |
|
print("Criterion: ", args.criterion) |
|
|
|
|
|
assert os.path.isfile(args.pretrained) |
|
ckpt = torch.load(args.pretrained, "cpu") |
|
croco_args = croco_args_from_ckpt(ckpt) |
|
croco_args["img_size"] = (args.crop[0], args.crop[1]) |
|
print("Croco args: " + str(croco_args)) |
|
args.croco_args = croco_args |
|
|
|
num_channels = {"stereo": 1, "flow": 2}[args.task] |
|
if criterion.with_conf: |
|
num_channels += 1 |
|
print(f"Building head PixelwiseTaskWithDPT() with {num_channels} channel(s)") |
|
head = PixelwiseTaskWithDPT() |
|
head.num_channels = num_channels |
|
|
|
model = CroCoDownstreamBinocular(head, **croco_args) |
|
interpolate_pos_embed(model, ckpt["model"]) |
|
msg = model.load_state_dict(ckpt["model"], strict=False) |
|
print(msg) |
|
|
|
total_params = sum(p.numel() for p in model.parameters()) |
|
total_params_trainable = sum( |
|
p.numel() for p in model.parameters() if p.requires_grad |
|
) |
|
print(f"Total params: {total_params}") |
|
print(f"Total params trainable: {total_params_trainable}") |
|
model_without_ddp = model.to(device) |
|
|
|
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() |
|
print("lr: %.2e" % args.lr) |
|
print("accumulate grad iterations: %d" % args.accum_iter) |
|
print("effective batch size: %d" % eff_batch_size) |
|
|
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel( |
|
model, device_ids=[args.gpu], static_graph=True |
|
) |
|
model_without_ddp = model.module |
|
|
|
|
|
param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) |
|
optimizer = eval(f"torch.optim.{args.optimizer}") |
|
print(optimizer) |
|
loss_scaler = NativeScaler() |
|
|
|
|
|
last_ckpt_fname = os.path.join(args.output_dir, f"checkpoint-last.pth") |
|
args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None |
|
|
|
if not args.resume and args.start_from: |
|
print(f"Starting from an other model's weights: {args.start_from}") |
|
best_so_far = None |
|
args.start_epoch = 0 |
|
ckpt = torch.load(args.start_from, "cpu") |
|
msg = model_without_ddp.load_state_dict(ckpt["model"], strict=False) |
|
print(msg) |
|
else: |
|
best_so_far = misc.load_model( |
|
args=args, |
|
model_without_ddp=model_without_ddp, |
|
optimizer=optimizer, |
|
loss_scaler=loss_scaler, |
|
) |
|
|
|
if best_so_far is None: |
|
best_so_far = np.inf |
|
|
|
|
|
log_writer = None |
|
if global_rank == 0 and args.output_dir is not None: |
|
log_writer = SummaryWriter( |
|
log_dir=args.output_dir, purge_step=args.start_epoch * 1000 |
|
) |
|
|
|
|
|
print("Building Train Data loader for dataset: ", args.dataset) |
|
train_dataset = ( |
|
get_train_dataset_stereo if args.task == "stereo" else get_train_dataset_flow |
|
)(args.dataset, crop_size=args.crop) |
|
|
|
def _print_repr_dataset(d): |
|
if isinstance(d, torch.utils.data.dataset.ConcatDataset): |
|
for dd in d.datasets: |
|
_print_repr_dataset(dd) |
|
else: |
|
print(repr(d)) |
|
|
|
_print_repr_dataset(train_dataset) |
|
print(" total length:", len(train_dataset)) |
|
if args.distributed: |
|
sampler_train = torch.utils.data.DistributedSampler( |
|
train_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True |
|
) |
|
else: |
|
sampler_train = torch.utils.data.RandomSampler(train_dataset) |
|
data_loader_train = torch.utils.data.DataLoader( |
|
train_dataset, |
|
sampler=sampler_train, |
|
batch_size=args.batch_size, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=True, |
|
) |
|
if args.val_dataset == "": |
|
data_loaders_val = None |
|
else: |
|
print("Building Val Data loader for datasets: ", args.val_dataset) |
|
val_datasets = ( |
|
get_test_datasets_stereo |
|
if args.task == "stereo" |
|
else get_test_datasets_flow |
|
)(args.val_dataset) |
|
for val_dataset in val_datasets: |
|
print(repr(val_dataset)) |
|
data_loaders_val = [ |
|
DataLoader( |
|
val_dataset, |
|
batch_size=1, |
|
shuffle=False, |
|
num_workers=args.num_workers, |
|
pin_memory=True, |
|
drop_last=False, |
|
) |
|
for val_dataset in val_datasets |
|
] |
|
bestmetric = ( |
|
"AVG_" |
|
if len(data_loaders_val) > 1 |
|
else str(data_loaders_val[0].dataset) + "_" |
|
) + args.bestmetric |
|
|
|
print(f"Start training for {args.epochs} epochs") |
|
start_time = time.time() |
|
|
|
for epoch in range(args.start_epoch, args.epochs): |
|
if args.distributed: |
|
data_loader_train.sampler.set_epoch(epoch) |
|
|
|
|
|
epoch_start = time.time() |
|
train_stats = train_one_epoch( |
|
model, |
|
criterion, |
|
metrics, |
|
data_loader_train, |
|
optimizer, |
|
device, |
|
epoch, |
|
loss_scaler, |
|
log_writer=log_writer, |
|
args=args, |
|
) |
|
epoch_time = time.time() - epoch_start |
|
|
|
if args.distributed: |
|
dist.barrier() |
|
|
|
|
|
if ( |
|
data_loaders_val is not None |
|
and args.eval_every > 0 |
|
and (epoch + 1) % args.eval_every == 0 |
|
): |
|
val_epoch_start = time.time() |
|
val_stats = validate_one_epoch( |
|
model, |
|
criterion, |
|
metrics, |
|
data_loaders_val, |
|
device, |
|
epoch, |
|
log_writer=log_writer, |
|
args=args, |
|
) |
|
val_epoch_time = time.time() - val_epoch_start |
|
|
|
val_best = val_stats[bestmetric] |
|
|
|
|
|
if val_best <= best_so_far: |
|
best_so_far = val_best |
|
misc.save_model( |
|
args=args, |
|
model_without_ddp=model_without_ddp, |
|
optimizer=optimizer, |
|
loss_scaler=loss_scaler, |
|
epoch=epoch, |
|
best_so_far=best_so_far, |
|
fname="best", |
|
) |
|
|
|
log_stats = { |
|
**{f"train_{k}": v for k, v in train_stats.items()}, |
|
"epoch": epoch, |
|
**{f"val_{k}": v for k, v in val_stats.items()}, |
|
} |
|
else: |
|
log_stats = { |
|
**{f"train_{k}": v for k, v in train_stats.items()}, |
|
"epoch": epoch, |
|
} |
|
|
|
if args.distributed: |
|
dist.barrier() |
|
|
|
|
|
if args.output_dir and ( |
|
(epoch + 1) % args.save_every == 0 or epoch + 1 == args.epochs |
|
): |
|
misc.save_model( |
|
args=args, |
|
model_without_ddp=model_without_ddp, |
|
optimizer=optimizer, |
|
loss_scaler=loss_scaler, |
|
epoch=epoch, |
|
best_so_far=best_so_far, |
|
fname="last", |
|
) |
|
|
|
if args.output_dir: |
|
if log_writer is not None: |
|
log_writer.flush() |
|
with open( |
|
os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8" |
|
) as f: |
|
f.write(json.dumps(log_stats) + "\n") |
|
|
|
total_time = time.time() - start_time |
|
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
print("Training time {}".format(total_time_str)) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = get_args_parser() |
|
args = args.parse_args() |
|
main(args) |
|
|