Spaces:
Sleeping
Sleeping
File size: 2,863 Bytes
084650c 8662b29 084650c 8662b29 084650c 8662b29 084650c 8662b29 084650c 8662b29 084650c 8662b29 084650c 8662b29 d58f394 084650c 8662b29 084650c 8662b29 084650c d58f394 084650c d58f394 084650c 8662b29 084650c 58bcfd4 8fd7e01 084650c f55c966 084650c 99994b6 66df1a4 084650c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
from keras.models import load_model
from PIL import Image
import numpy as np
import cv2
import requests
import face_recognition
import os
from datetime import datetime
#the following are to do with this interactive notebook code
from matplotlib import pyplot as plt # this lets you draw inline pictures in the notebooks
import pylab # this allows you to control figure size
pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
import io
import streamlit as st
bytes_data=None
Images = []
classnames = []
myList = os.listdir()
#st.write(myList)
for cls in myList:
if os.path.splitext(cls)[1] == ".jpg" :
curImg = cv2.imread(f'{cls}')
Images.append(curImg)
classnames.append(os.path.splitext(cls)[0])
st.write(classnames)
def findEncodings(Images):
encodeList = []
for img in Images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
encodeListknown = findEncodings(Images)
st.write('Encoding Complete')
img_file_buffer=st.camera_input("Take a picture")
if img_file_buffer is not None:
test_image = Image.open(img_file_buffer)
st.image(test_image, use_column_width=True)
image = np.asarray(test_image)
#########################
imgS = cv2.resize(image,(0,0),None,0.25,0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
matches = face_recognition.compare_faces(encodeListknown,encodeFace)
faceDis = face_recognition.face_distance(encodeListknown,encodeFace)
#print(faceDis)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classnames[matchIndex]
st.write(name)
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4
cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)
##############
url = "https://kiwi-whispering-plier.glitch.me/update"
data = {
'name': name,
}
response = requests.get(url, params=data)
if response.status_code == 200 :
st.write(" data updated on : https://kiwi-whispering-plier.glitch.me" )
else : st.write("data not updated ")
##############################
st.image(image)
if bytes_data is None:
st.stop() |