File size: 2,325 Bytes
8662b29
 
 
 
 
 
 
 
 
 
 
 
d58f394
8662b29
 
 
 
 
 
 
 
 
 
 
 
 
d58f394
8662b29
 
d58f394
 
 
66df1a4
 
8662b29
d58f394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8662b29
66df1a4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import numpy as np
import cv2 
import requests
import face_recognition
import os
from datetime import datetime
import streamlit as st

Images = []
classnames = []
myList = os.listdir()
for cls in myList:
    if os.path.splitext(cls)[1] == ".jpg":
        curImg = cv2.imread(f'{cls}')
        Images.append(curImg)
        classnames.append(os.path.splitext(cls)[0])

def findEncodings(Images):
    encodeList = []
    for img in Images:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        encode = face_recognition.face_encodings(img)[0]
        encodeList.append(encode)
    return encodeList

encodeListknown = findEncodings(Images)

st.write('Encoding Complete')

cap = cv2.VideoCapture(0)  # Use 0 for the default camera
while True:
    ret, frame = cap.read()
    frame = cv2.flip(frame, 1)  # Flip horizontally
    st.image(frame)
    
    if ret:
        imgS = cv2.resize(frame, (0, 0), None, 0.25, 0.25)
        imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
        facesCurFrame = face_recognition.face_locations(imgS)
        encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)

        for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
            matches = face_recognition.compare_faces(encodeListknown, encodeFace)
            faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
            matchIndex = np.argmin(faceDis)

            if matches[matchIndex]:
                name = classnames[matchIndex]
                st.write(name)
                y1, x2, y2, x1 = faceLoc
                y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
                cv2.rectangle(frame, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
                cv2.putText(frame, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)

                # Sending data to a URL
                url = "https://kiwi-whispering-plier.glitch.me/update"
                data1 = {'name': name}
                response = requests.post(url, data=data1)

                if response.status_code == 200:
                    st.write("Data updated on: " + url)
                else:
                    st.write("Data not updated")

  st.image(image)
if bytes_data is None:
     st.stop()