File size: 3,920 Bytes
edbbffa
 
 
 
 
def2cf6
883c91d
edbbffa
 
 
 
 
 
 
 
 
 
8662b29
edbbffa
8662b29
edbbffa
 
 
 
 
 
 
 
 
 
 
 
2678eae
 
 
 
 
 
 
 
 
 
edbbffa
 
 
 
 
 
 
 
2678eae
 
 
 
 
 
edbbffa
 
 
 
 
 
 
 
 
 
 
6f55d1e
edbbffa
 
 
 
 
 
 
 
 
 
 
 
 
9b07b0d
 
 
 
 
 
 
2678eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4dc4d2
 
2678eae
883c91d
2678eae
 
883c91d
2678eae
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from keras.models import load_model
from PIL import Image
import numpy as np
import cv2 
import requests
from keras.models import model_from_json

import face_recognition
import os
from datetime import datetime

#the following are to do with this interactive notebook code
from matplotlib import pyplot as plt # this lets you draw inline pictures in the notebooks
import pylab # this allows you to control figure size 
pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook

import io
import streamlit as st
bytes_data=None

Images = []
classnames = []
myList = os.listdir()
#st.write(myList)
for cls in myList:
    if os.path.splitext(cls)[1] == ".jpg"  :
        curImg = cv2.imread(f'{cls}')
        Images.append(curImg)
        classnames.append(os.path.splitext(cls)[0])
st.write(classnames)


json_file = open("facialemotionmodel.json", "r")
model_json = json_file.read()
json_file.close()
model = model_from_json(model_json)

model.load_weights("facialemotionmodel.h5")
haar_file=cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
face_cascade=cv2.CascadeClassifier(haar_file)


def findEncodings(Images):
    encodeList = []
    for img in Images:
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        encode = face_recognition.face_encodings(img)[0]
        encodeList.append(encode)
    return encodeList

def extract_features(image):
    feature = np.array(image)
    feature = feature.reshape(1,48,48,1)
    return feature/255.0

labels = {0 : 'angry', 1 : 'disgust', 2 : 'fear', 3 : 'happy', 4 : 'neutral', 5 : 'sad', 6 : 'surprise'}

encodeListknown = findEncodings(Images)
st.write('Encoding Complete')

img_file_buffer=st.camera_input("Take a picture")
if img_file_buffer is not None:
     
     test_image = Image.open(img_file_buffer)
     st.image(test_image, use_column_width=True)
     
     image = np.asarray(test_image)
    
     #########################
     imgS = cv2.resize(image,(0,0),None,0.25,0.25)
     imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
     facesCurFrame = face_recognition.face_locations(imgS)
     encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)

     for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
         matches = face_recognition.compare_faces(encodeListknown,encodeFace)
         faceDis = face_recognition.face_distance(encodeListknown,encodeFace)
         #print(faceDis)
         matchIndex = np.argmin(faceDis)

         if matches[matchIndex]:
            name = classnames[matchIndex]
            st.write(name)
            y1, x2, y2, x1 = faceLoc
            y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4
            cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
            cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
            cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)

            faces=face_cascade.detectMultiScale(image,1.3,5)
            st.write("close")
            try: 
                for (p,q,r,s) in faces:
                    
                    cv2.rectangle(im,(p,q),(p+r,q+s),(255,0,0),2)
                    image = cv2.resize(image,(48,48))
                    img = extract_features(image)
                    pred = model.predict(img)
                    prediction_label = labels[pred.argmax()]
                    # print("Predicted Output:", prediction_label)
                    # cv2.putText(im,prediction_label)
                    cv2.putText(image, '% s' %(prediction_label), (p-10, q-10),cv2.FONT_HERSHEY_COMPLEX_SMALL,2, (0,0,255))
                    st.write("success")
            except:
                pass
             
           
            # ##############
            # url = "https://kiwi-whispering-plier.glitch.me/update" 
            
            # data = {
            #     'name': name,
            # }
            # else:
            #     st.write("Please smile")