Spaces:
Sleeping
Sleeping
Commit
·
49c5d4a
1
Parent(s):
86c88ec
Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,13 @@ import numpy as np
|
|
4 |
import cv2
|
5 |
import requests
|
6 |
from keras.models import model_from_json
|
7 |
-
|
8 |
import face_recognition
|
9 |
import os
|
10 |
from datetime import datetime
|
11 |
|
12 |
-
|
13 |
-
from
|
14 |
-
|
15 |
-
pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
|
16 |
|
17 |
import io
|
18 |
import streamlit as st
|
@@ -29,16 +27,22 @@ for cls in myList:
|
|
29 |
classnames.append(os.path.splitext(cls)[0])
|
30 |
st.write(classnames)
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
35 |
json_file.close()
|
36 |
-
|
37 |
|
38 |
-
model
|
39 |
-
|
40 |
-
face_cascade=cv2.CascadeClassifier(haar_file)
|
41 |
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
def findEncodings(Images):
|
44 |
encodeList = []
|
@@ -53,7 +57,6 @@ def extract_features(image):
|
|
53 |
feature = feature.reshape(1,48,48,1)
|
54 |
return feature/255.0
|
55 |
|
56 |
-
labels = {0 : 'angry', 1 : 'disgust', 2 : 'fear', 3 : 'happy', 4 : 'neutral', 5 : 'sad', 6 : 'surprise'}
|
57 |
|
58 |
encodeListknown = findEncodings(Images)
|
59 |
st.write('Encoding Complete')
|
@@ -64,23 +67,48 @@ if img_file_buffer is not None:
|
|
64 |
test_image = Image.open(img_file_buffer)
|
65 |
image1 = Image.open(img_file_buffer)
|
66 |
st.image(test_image, use_column_width=True)
|
67 |
-
image = np.asarray(
|
68 |
-
image1 = np.asarray(test_image)
|
69 |
-
image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY)
|
70 |
-
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
#########################
|
73 |
imgS = cv2.resize(image,(0,0),None,0.25,0.25)
|
74 |
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
75 |
facesCurFrame = face_recognition.face_locations(imgS)
|
76 |
encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
|
77 |
-
|
78 |
for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
|
79 |
matches = face_recognition.compare_faces(encodeListknown,encodeFace)
|
80 |
faceDis = face_recognition.face_distance(encodeListknown,encodeFace)
|
81 |
#print(faceDis)
|
82 |
matchIndex = np.argmin(faceDis)
|
83 |
-
st.write("
|
84 |
if matches[matchIndex]:
|
85 |
name = classnames[matchIndex]
|
86 |
st.write(name)
|
@@ -89,28 +117,19 @@ if img_file_buffer is not None:
|
|
89 |
cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
|
90 |
cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
|
91 |
cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
img = cv2.putText(image1, '% s' %(prediction_label), (p-10, q-10),cv2.FONT_HERSHEY_COMPLEX_SMALL,2, (0,0,255))
|
104 |
-
st.image(img, use_column_width=True)
|
105 |
else:
|
106 |
st.write("FAiled")
|
107 |
|
108 |
|
109 |
-
|
110 |
-
# url = "https://kiwi-whispering-plier.glitch.me/update"
|
111 |
-
|
112 |
-
# data = {
|
113 |
-
# 'name': name,
|
114 |
-
# }
|
115 |
-
# else:
|
116 |
-
# st.write("Please smile")
|
|
|
4 |
import cv2
|
5 |
import requests
|
6 |
from keras.models import model_from_json
|
|
|
7 |
import face_recognition
|
8 |
import os
|
9 |
from datetime import datetime
|
10 |
|
11 |
+
from keras.models import model_from_json
|
12 |
+
from keras.preprocessing.image import img_to_array
|
13 |
+
from PIL import Image
|
|
|
14 |
|
15 |
import io
|
16 |
import streamlit as st
|
|
|
27 |
classnames.append(os.path.splitext(cls)[0])
|
28 |
st.write(classnames)
|
29 |
|
30 |
+
# load model
|
31 |
+
emotion_dict = {0:'angry', 1 :'happy', 2: 'neutral', 3:'sad', 4: 'surprise'}
|
32 |
+
# load json and create model
|
33 |
+
json_file = open('emotion_model1.json', 'r')
|
34 |
+
loaded_model_json = json_file.read()
|
35 |
json_file.close()
|
36 |
+
classifier = model_from_json(loaded_model_json)
|
37 |
|
38 |
+
# load weights into new model
|
39 |
+
classifier.load_weights("emotion_model1.h5")
|
|
|
40 |
|
41 |
+
#load face
|
42 |
+
try:
|
43 |
+
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
44 |
+
except Exception:
|
45 |
+
st.write("Error loading cascade classifiers")
|
46 |
|
47 |
def findEncodings(Images):
|
48 |
encodeList = []
|
|
|
57 |
feature = feature.reshape(1,48,48,1)
|
58 |
return feature/255.0
|
59 |
|
|
|
60 |
|
61 |
encodeListknown = findEncodings(Images)
|
62 |
st.write('Encoding Complete')
|
|
|
67 |
test_image = Image.open(img_file_buffer)
|
68 |
image1 = Image.open(img_file_buffer)
|
69 |
st.image(test_image, use_column_width=True)
|
70 |
+
image = np.asarray(test_image)
|
|
|
|
|
|
|
71 |
|
72 |
+
img = np.asarray(image1)
|
73 |
+
img = cv2.resize(img,(0,0),None,0.25,0.25)
|
74 |
+
st.write("1")
|
75 |
+
|
76 |
+
#image gray
|
77 |
+
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
78 |
+
faces = face_cascade.detectMultiScale(
|
79 |
+
image=img_gray, scaleFactor=1.3, minNeighbors=5)
|
80 |
+
st.write("2")
|
81 |
+
for (x, y, w, h) in faces:
|
82 |
+
cv2.rectangle(img=img, pt1=(x, y), pt2=(
|
83 |
+
x + w, y + h), color=(255, 0, 0), thickness=2)
|
84 |
+
roi_gray = img_gray[y:y + h, x:x + w]
|
85 |
+
roi_gray = cv2.resize(roi_gray, (48, 48), interpolation=cv2.INTER_AREA)
|
86 |
+
if np.sum([roi_gray]) != 0:
|
87 |
+
roi = roi_gray.astype('float') / 255.0
|
88 |
+
roi = img_to_array(roi)
|
89 |
+
roi = np.expand_dims(roi, axis=0)
|
90 |
+
prediction = classifier.predict(roi)[0]
|
91 |
+
maxindex = int(np.argmax(prediction))
|
92 |
+
finalout = emotion_dict[maxindex]
|
93 |
+
output = str(finalout)
|
94 |
+
st.write("3")
|
95 |
+
label_position = (x, y)
|
96 |
+
img = cv2.putText(img, output, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
97 |
+
st.image(img, use_column_width=True)
|
98 |
+
st.write("4")
|
99 |
+
|
100 |
#########################
|
101 |
imgS = cv2.resize(image,(0,0),None,0.25,0.25)
|
102 |
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
|
103 |
facesCurFrame = face_recognition.face_locations(imgS)
|
104 |
encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
|
105 |
+
st.write("5")
|
106 |
for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
|
107 |
matches = face_recognition.compare_faces(encodeListknown,encodeFace)
|
108 |
faceDis = face_recognition.face_distance(encodeListknown,encodeFace)
|
109 |
#print(faceDis)
|
110 |
matchIndex = np.argmin(faceDis)
|
111 |
+
st.write("6")
|
112 |
if matches[matchIndex]:
|
113 |
name = classnames[matchIndex]
|
114 |
st.write(name)
|
|
|
117 |
cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
|
118 |
cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
|
119 |
cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)
|
120 |
+
st.write("7")
|
121 |
+
##############
|
122 |
+
if name:
|
123 |
+
if output=='happy':
|
124 |
+
url = "https://kiwi-whispering-plier.glitch.me/update"
|
125 |
+
|
126 |
+
data = {
|
127 |
+
'name': name,
|
128 |
+
}
|
129 |
+
else:
|
130 |
+
st.write("Please smile")
|
|
|
|
|
131 |
else:
|
132 |
st.write("FAiled")
|
133 |
|
134 |
|
135 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|