gurwindersingh commited on
Commit
7c3e7c7
·
1 Parent(s): 738a81e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -71,13 +71,13 @@ if img_file_buffer is not None:
71
 
72
  img = np.asarray(image1)
73
  img = cv2.resize(img,(0,0),None,0.25,0.25)
74
- st.write("1")
75
 
76
  #image gray
77
  img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
78
  faces = face_cascade.detectMultiScale(
79
  image=img_gray, scaleFactor=1.3, minNeighbors=5)
80
- st.write("2")
81
  for (x, y, w, h) in faces:
82
  cv2.rectangle(img=img, pt1=(x, y), pt2=(
83
  x + w, y + h), color=(255, 0, 0), thickness=2)
@@ -91,24 +91,24 @@ if img_file_buffer is not None:
91
  maxindex = int(np.argmax(prediction))
92
  finalout = emotion_dict[maxindex]
93
  output = str(finalout)
94
- st.write("3")
95
  label_position = (x, y)
96
  img = cv2.putText(img, output, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
97
  st.image(img, use_column_width=True)
98
- st.write("4")
99
 
100
  #########################
101
  imgS = cv2.resize(image,(0,0),None,0.25,0.25)
102
  imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
103
  facesCurFrame = face_recognition.face_locations(imgS)
104
  encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
105
- st.write("5")
106
  for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
107
  matches = face_recognition.compare_faces(encodeListknown,encodeFace)
108
  faceDis = face_recognition.face_distance(encodeListknown,encodeFace)
109
  #print(faceDis)
110
  matchIndex = np.argmin(faceDis)
111
- st.write("6")
112
  if matches[matchIndex]:
113
  name = classnames[matchIndex]
114
  st.write(name)
@@ -117,7 +117,7 @@ if img_file_buffer is not None:
117
  cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
118
  cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
119
  cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)
120
- st.write("7")
121
  ##############
122
  if name:
123
  if output=='happy':
 
71
 
72
  img = np.asarray(image1)
73
  img = cv2.resize(img,(0,0),None,0.25,0.25)
74
+ st.write("resize")
75
 
76
  #image gray
77
  img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
78
  faces = face_cascade.detectMultiScale(
79
  image=img_gray, scaleFactor=1.3, minNeighbors=5)
80
+ st.write("gray")
81
  for (x, y, w, h) in faces:
82
  cv2.rectangle(img=img, pt1=(x, y), pt2=(
83
  x + w, y + h), color=(255, 0, 0), thickness=2)
 
91
  maxindex = int(np.argmax(prediction))
92
  finalout = emotion_dict[maxindex]
93
  output = str(finalout)
94
+ st.write(output)
95
  label_position = (x, y)
96
  img = cv2.putText(img, output, label_position, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
97
  st.image(img, use_column_width=True)
98
+ st.write("emotion done")
99
 
100
  #########################
101
  imgS = cv2.resize(image,(0,0),None,0.25,0.25)
102
  imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
103
  facesCurFrame = face_recognition.face_locations(imgS)
104
  encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
105
+ st.write("recog")
106
  for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
107
  matches = face_recognition.compare_faces(encodeListknown,encodeFace)
108
  faceDis = face_recognition.face_distance(encodeListknown,encodeFace)
109
  #print(faceDis)
110
  matchIndex = np.argmin(faceDis)
111
+ st.write("matching")
112
  if matches[matchIndex]:
113
  name = classnames[matchIndex]
114
  st.write(name)
 
117
  cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
118
  cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
119
  cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)
120
+ st.write("matched")
121
  ##############
122
  if name:
123
  if output=='happy':