Spaces:
Sleeping
Sleeping
Commit
·
af0aeb3
1
Parent(s):
7e8aa2e
Update app.py
Browse files
app.py
CHANGED
|
@@ -62,9 +62,9 @@ img_file_buffer=st.camera_input("Take a picture")
|
|
| 62 |
if img_file_buffer is not None:
|
| 63 |
|
| 64 |
test_image = Image.open(img_file_buffer)
|
|
|
|
| 65 |
st.image(test_image, use_column_width=True)
|
| 66 |
-
image =
|
| 67 |
-
image = extract_features(image)
|
| 68 |
|
| 69 |
|
| 70 |
#########################
|
|
@@ -85,16 +85,22 @@ if img_file_buffer is not None:
|
|
| 85 |
y1, x2, y2, x1 = faceLoc
|
| 86 |
y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4
|
| 87 |
cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
|
| 88 |
-
st.write("reshape")
|
| 89 |
-
pred = model.predict(image)
|
| 90 |
-
prediction_label = labels[pred.argmax()]
|
| 91 |
-
st.write("predict")
|
| 92 |
cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
|
| 93 |
cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
else:
|
| 99 |
st.write("fail")
|
| 100 |
|
|
|
|
| 62 |
if img_file_buffer is not None:
|
| 63 |
|
| 64 |
test_image = Image.open(img_file_buffer)
|
| 65 |
+
image1 = Image.open(img_file_buffer)
|
| 66 |
st.image(test_image, use_column_width=True)
|
| 67 |
+
image = np.asarray(test_image)
|
|
|
|
| 68 |
|
| 69 |
|
| 70 |
#########################
|
|
|
|
| 85 |
y1, x2, y2, x1 = faceLoc
|
| 86 |
y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4
|
| 87 |
cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
|
| 89 |
cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2)
|
| 90 |
+
|
| 91 |
+
faces=face_cascade.detectMultiScale(image1,1.3,5)
|
| 92 |
+
try:
|
| 93 |
+
for (p,q,r,s) in faces:
|
| 94 |
+
image = gray[q:q+s,p:p+r]
|
| 95 |
+
cv2.rectangle(image1,(p,q),(p+r,q+s),(255,0,0),2)
|
| 96 |
+
image = cv2.resize(image,(48,48))
|
| 97 |
+
img = extract_features(image)
|
| 98 |
+
pred = model.predict(img)
|
| 99 |
+
prediction_label = labels[pred.argmax()]
|
| 100 |
+
st.write("Predicted Output:", prediction_label)
|
| 101 |
+
# cv2.putText(im,prediction_label)
|
| 102 |
+
img = cv2.putText(image1, '% s' %(prediction_label), (p-10, q-10),cv2.FONT_HERSHEY_COMPLEX_SMALL,2, (0,0,255))
|
| 103 |
+
st.image(img, use_column_width=True)
|
| 104 |
else:
|
| 105 |
st.write("fail")
|
| 106 |
|