from keras.models import load_model from PIL import Image import numpy as np import cv2 import requests import face_recognition import os from datetime import datetime #the following are to do with this interactive notebook code from matplotlib import pyplot as plt # this lets you draw inline pictures in the notebooks import pylab # this allows you to control figure size pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook import io import streamlit as st bytes_data=None Images = [] classnames = [] myList = os.listdir() #st.write(myList) for cls in myList: if os.path.splitext(cls)[1] == ".jpg" : curImg = cv2.imread(f'{cls}') Images.append(curImg) classnames.append(os.path.splitext(cls)[0]) st.write(classnames) json_file = open("facialemotionmodel.json", "r") model_json = json_file.read() json_file.close() model = model_from_json(model_json) model.load_weights("facialemotionmodel.h5") haar_file=cv2.data.haarcascades + 'haarcascade_frontalface_default.xml' face_cascade=cv2.CascadeClassifier(haar_file) def findEncodings(Images): encodeList = [] for img in Images: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) encode = face_recognition.face_encodings(img)[0] encodeList.append(encode) return encodeList def extract_features(image): feature = np.array(image) feature = feature.reshape(1,48,48,1) return feature/255.0 labels = {0 : 'angry', 1 : 'disgust', 2 : 'fear', 3 : 'happy', 4 : 'neutral', 5 : 'sad', 6 : 'surprise'} encodeListknown = findEncodings(Images) st.write('Encoding Complete') img_file_buffer=st.camera_input("Take a picture") if img_file_buffer is not None: test_image = Image.open(img_file_buffer) st.image(test_image, use_column_width=True) image = np.asarray(test_image) ######################### imgS = cv2.resize(image,(0,0),None,0.25,0.25) imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB) facesCurFrame = face_recognition.face_locations(imgS) encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame) for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame): matches = face_recognition.compare_faces(encodeListknown,encodeFace) faceDis = face_recognition.face_distance(encodeListknown,encodeFace) #print(faceDis) matchIndex = np.argmin(faceDis) if matches[matchIndex]: name = classnames[matchIndex] st.write(name) y1, x2, y2, x1 = faceLoc y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4 cv2.rectangle(image,(x1,y1),(x2,y2),(0,255,0),2) cv2.rectangle(image,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED) cv2.putText(image,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255, 255, 255),2) faces=face_cascade.detectMultiScale(image,1.3,5) st.write("close") try: for (p,q,r,s) in faces: cv2.rectangle(im,(p,q),(p+r,q+s),(255,0,0),2) image = cv2.resize(image,(48,48)) img = extract_features(image) pred = model.predict(img) prediction_label = labels[pred.argmax()] # print("Predicted Output:", prediction_label) # cv2.putText(im,prediction_label) cv2.putText(image, '% s' %(prediction_label), (p-10, q-10),cv2.FONT_HERSHEY_COMPLEX_SMALL,2, (0,0,255)) st.write("success") # ############## # url = "https://kiwi-whispering-plier.glitch.me/update" # data = { # 'name': name, # } # else: # st.write("Please smile")