Commit
·
d3b823a
1
Parent(s):
3469f37
redesign
Browse files- .gitignore +1 -0
- agent.py +7 -4
- app.py +29 -4
- local_development.py +2 -0
- requirements.txt +6 -1
- tools/utils.py +8 -6
- tools/web.py +51 -0
.gitignore
CHANGED
@@ -1 +1,2 @@
|
|
1 |
__pycache__
|
|
|
|
1 |
__pycache__
|
2 |
+
answears.json
|
agent.py
CHANGED
@@ -2,10 +2,11 @@ import os
|
|
2 |
|
3 |
from pathlib import Path
|
4 |
from typing import Optional
|
5 |
-
from smolagents import CodeAgent, PythonInterpreterTool,
|
6 |
from tools.utils import reverse_string, process_excel_file, is_text_file, execute_python_file, get_ingredients
|
7 |
from tools.youtube import load_youtube
|
8 |
from tools.audio import transcribe_audio
|
|
|
9 |
|
10 |
# from langchain.agents import load_tools
|
11 |
|
@@ -18,9 +19,11 @@ class BasicAgent:
|
|
18 |
def __init__(self, model):
|
19 |
self._model = model
|
20 |
self._agent = CodeAgent(
|
21 |
-
tools=[PythonInterpreterTool(),
|
22 |
-
additional_authorized_imports=['random', 'time', 'itertools', 'pandas'],
|
23 |
-
model=model
|
|
|
|
|
24 |
)
|
25 |
print("BasicAgent initialized.")
|
26 |
|
|
|
2 |
|
3 |
from pathlib import Path
|
4 |
from typing import Optional
|
5 |
+
from smolagents import CodeAgent, PythonInterpreterTool, WikipediaSearchTool, VisitWebpageTool, FinalAnswerTool
|
6 |
from tools.utils import reverse_string, process_excel_file, is_text_file, execute_python_file, get_ingredients
|
7 |
from tools.youtube import load_youtube
|
8 |
from tools.audio import transcribe_audio
|
9 |
+
from tools.web import optimized_web_search
|
10 |
|
11 |
# from langchain.agents import load_tools
|
12 |
|
|
|
19 |
def __init__(self, model):
|
20 |
self._model = model
|
21 |
self._agent = CodeAgent(
|
22 |
+
tools=[PythonInterpreterTool(), WikipediaSearchTool(), VisitWebpageTool(), FinalAnswerTool(),optimized_web_search, reverse_string, process_excel_file, is_text_file, load_youtube, execute_python_file, transcribe_audio, get_ingredients],
|
23 |
+
additional_authorized_imports=['*', 'subprocess','markdownify', 'chess', 'random', 'time', 'itertools', 'pandas', 'webbrowser', 'requests', 'beautifulsoup4', 'csv', 'openpyxl', 'json', 'yaml'],
|
24 |
+
model=model,
|
25 |
+
add_base_tools=True,
|
26 |
+
max_steps=10
|
27 |
)
|
28 |
print("BasicAgent initialized.")
|
29 |
|
app.py
CHANGED
@@ -1,16 +1,31 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
6 |
|
7 |
from agent import BasicAgent
|
|
|
|
|
8 |
|
9 |
# (Keep Constants as is)
|
10 |
# --- Constants ---
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
16 |
"""
|
@@ -33,7 +48,11 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
33 |
|
34 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
35 |
try:
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
except Exception as e:
|
38 |
print(f"Error instantiating agent: {e}")
|
39 |
return f"Error initializing agent: {e}", None
|
@@ -65,15 +84,22 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
65 |
# 3. Run your Agent
|
66 |
results_log = []
|
67 |
answers_payload = []
|
|
|
68 |
print(f"Running agent on {len(questions_data)} questions...")
|
69 |
for item in questions_data:
|
70 |
task_id = item.get("task_id")
|
|
|
71 |
question_text = item.get("question")
|
72 |
if not task_id or question_text is None:
|
73 |
print(f"Skipping item with missing task_id or question: {item}")
|
74 |
continue
|
75 |
try:
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
78 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
79 |
except Exception as e:
|
@@ -92,8 +118,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
92 |
# 5. Submit
|
93 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
94 |
try:
|
95 |
-
response =
|
96 |
-
response.raise_for_status()
|
97 |
result_data = response.json()
|
98 |
final_status = (
|
99 |
f"Submission Successful!\n"
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import inspect
|
6 |
import pandas as pd
|
7 |
+
import backoff
|
8 |
|
9 |
from agent import BasicAgent
|
10 |
+
from smolagents import LiteLLMModel
|
11 |
+
from tools.utils import download_file
|
12 |
|
13 |
# (Keep Constants as is)
|
14 |
# --- Constants ---
|
15 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
16 |
|
17 |
|
18 |
+
@backoff.on_exception(backoff.expo, Exception, max_tries=8, max_time=60)
|
19 |
+
def submit(submit_url: str, submission_data):
|
20 |
+
try:
|
21 |
+
with open('answears.log', 'w') as s:
|
22 |
+
s.write(json.dumps(submission_data))
|
23 |
+
except:
|
24 |
+
pass
|
25 |
+
|
26 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
27 |
+
response.raise_for_status()
|
28 |
+
return response
|
29 |
|
30 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
31 |
"""
|
|
|
48 |
|
49 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
50 |
try:
|
51 |
+
model = LiteLLMModel(
|
52 |
+
model_id="ollama/qwen2.5:7b",
|
53 |
+
api_base="http://localhost:11434"
|
54 |
+
)
|
55 |
+
agent = BasicAgent(model)
|
56 |
except Exception as e:
|
57 |
print(f"Error instantiating agent: {e}")
|
58 |
return f"Error initializing agent: {e}", None
|
|
|
84 |
# 3. Run your Agent
|
85 |
results_log = []
|
86 |
answers_payload = []
|
87 |
+
file_path = None
|
88 |
print(f"Running agent on {len(questions_data)} questions...")
|
89 |
for item in questions_data:
|
90 |
task_id = item.get("task_id")
|
91 |
+
file_name = item.get('file_name')
|
92 |
question_text = item.get("question")
|
93 |
if not task_id or question_text is None:
|
94 |
print(f"Skipping item with missing task_id or question: {item}")
|
95 |
continue
|
96 |
try:
|
97 |
+
if file_name:
|
98 |
+
task_id = item.get('task_id')
|
99 |
+
file_path = download_file(f'{DEFAULT_API_URL}/files/{task_id}', file_name)
|
100 |
+
else:
|
101 |
+
file_path = None
|
102 |
+
submitted_answer = str(agent(question_text, file_path))
|
103 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
104 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
105 |
except Exception as e:
|
|
|
118 |
# 5. Submit
|
119 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
120 |
try:
|
121 |
+
response = submit(submit_url, submission_data)
|
|
|
122 |
result_data = response.json()
|
123 |
final_status = (
|
124 |
f"Submission Successful!\n"
|
local_development.py
CHANGED
@@ -31,6 +31,8 @@ if __name__ == '__main__':
|
|
31 |
if file_name:
|
32 |
task_id = question.get('task_id')
|
33 |
file_path = download_file(f'{base_url}/files/{task_id}', file_name)
|
|
|
|
|
34 |
|
35 |
|
36 |
model = LiteLLMModel(
|
|
|
31 |
if file_name:
|
32 |
task_id = question.get('task_id')
|
33 |
file_path = download_file(f'{base_url}/files/{task_id}', file_name)
|
34 |
+
else:
|
35 |
+
file_path = None
|
36 |
|
37 |
|
38 |
model = LiteLLMModel(
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
gradio
|
|
|
2 |
requests
|
3 |
smolagents
|
4 |
smolagents[litellm]
|
@@ -11,4 +12,8 @@ langchain
|
|
11 |
langchain-community
|
12 |
backoff
|
13 |
SpeechRecognition
|
14 |
-
pydub
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
+
gradio[oauth]
|
3 |
requests
|
4 |
smolagents
|
5 |
smolagents[litellm]
|
|
|
12 |
langchain-community
|
13 |
backoff
|
14 |
SpeechRecognition
|
15 |
+
pydub
|
16 |
+
wikipedia-api
|
17 |
+
beautifulsoup4
|
18 |
+
chess
|
19 |
+
markdownify
|
tools/utils.py
CHANGED
@@ -114,7 +114,7 @@ def is_text_file(file_path: str) -> bool:
|
|
114 |
|
115 |
|
116 |
@tool
|
117 |
-
def execute_python_file(file_path: str) ->
|
118 |
"""
|
119 |
Execute a Python code from file_path in a separate process and return its output as a numeric value.
|
120 |
|
@@ -125,7 +125,7 @@ def execute_python_file(file_path: str) -> Union[str|float]:
|
|
125 |
file_path (str): Path to the Python file to execute.
|
126 |
|
127 |
Returns:
|
128 |
-
|
129 |
|
130 |
Raises:
|
131 |
None: All exceptions are handled internally and returned as error strings.
|
@@ -153,7 +153,7 @@ def execute_python_file(file_path: str) -> Union[str|float]:
|
|
153 |
[sys.executable, file_path],
|
154 |
capture_output=True,
|
155 |
text=True,
|
156 |
-
timeout=
|
157 |
)
|
158 |
|
159 |
# If there's stderr output, include it in the result
|
@@ -163,9 +163,11 @@ def execute_python_file(file_path: str) -> Union[str|float]:
|
|
163 |
# Include stderr even if return code is 0 (warnings, etc.)
|
164 |
return f"{result.stdout.strip()}\nWarnings/Info: {result.stderr.strip()}"
|
165 |
else:
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
169 |
return result.stdout.strip() if result.stdout.strip() else "Script executed successfully with no output"
|
170 |
|
171 |
except subprocess.TimeoutExpired:
|
|
|
114 |
|
115 |
|
116 |
@tool
|
117 |
+
def execute_python_file(file_path: str) -> str:
|
118 |
"""
|
119 |
Execute a Python code from file_path in a separate process and return its output as a numeric value.
|
120 |
|
|
|
125 |
file_path (str): Path to the Python file to execute.
|
126 |
|
127 |
Returns:
|
128 |
+
str: The output from the executed script, or an error message if execution failed.
|
129 |
|
130 |
Raises:
|
131 |
None: All exceptions are handled internally and returned as error strings.
|
|
|
153 |
[sys.executable, file_path],
|
154 |
capture_output=True,
|
155 |
text=True,
|
156 |
+
timeout=180 # 180 seconds timeout
|
157 |
)
|
158 |
|
159 |
# If there's stderr output, include it in the result
|
|
|
163 |
# Include stderr even if return code is 0 (warnings, etc.)
|
164 |
return f"{result.stdout.strip()}\nWarnings/Info: {result.stderr.strip()}"
|
165 |
else:
|
166 |
+
for i in result.stdout.strip().split():
|
167 |
+
try:
|
168 |
+
return str(int(i.strip()))
|
169 |
+
except:
|
170 |
+
pass
|
171 |
return result.stdout.strip() if result.stdout.strip() else "Script executed successfully with no output"
|
172 |
|
173 |
except subprocess.TimeoutExpired:
|
tools/web.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from smolagents import DuckDuckGoSearchTool
|
3 |
+
from smolagents import tool
|
4 |
+
|
5 |
+
@tool
|
6 |
+
def optimized_web_search(
|
7 |
+
search_query: str, important_words: list, batch_size: int = 500
|
8 |
+
) -> str:
|
9 |
+
"""A tool that performs a web search and filters the results to only include content chunks that contain important keywords.
|
10 |
+
Args:
|
11 |
+
search_query: The search query to use (e.g., 'Beatles albums Wikipedia')
|
12 |
+
important_words: List of important keywords to filter by (e.g., ['Abbey Road', 'Let It Be', '1970'])
|
13 |
+
batch_size: The size of content chunks to process (default: 500 characters)
|
14 |
+
"""
|
15 |
+
try:
|
16 |
+
# Perform the search using DuckDuckGoSearchTool
|
17 |
+
search_tool = DuckDuckGoSearchTool()
|
18 |
+
time.sleep(10)
|
19 |
+
search_results = search_tool.forward(search_query)
|
20 |
+
# Check if search_results is empty or None
|
21 |
+
if not search_results or len(search_results) == 0:
|
22 |
+
return "No search results found."
|
23 |
+
|
24 |
+
# If search_results is a dictionary, extract the content
|
25 |
+
if isinstance(search_results, list):
|
26 |
+
all_content = " ".join(
|
27 |
+
[result.get("content", "") for result in search_results]
|
28 |
+
)
|
29 |
+
else:
|
30 |
+
all_content = search_results
|
31 |
+
|
32 |
+
|
33 |
+
batches = []
|
34 |
+
for i in range(0, len(all_content), batch_size):
|
35 |
+
batches.append(all_content[i : i + batch_size])
|
36 |
+
|
37 |
+
# Filter batches
|
38 |
+
filtered_batches = []
|
39 |
+
for batch in batches:
|
40 |
+
if any(word.lower() in batch.lower() for word in important_words):
|
41 |
+
filtered_batches.append(batch)
|
42 |
+
|
43 |
+
filtered_content = "\n\n".join(filtered_batches)
|
44 |
+
|
45 |
+
if not filtered_content:
|
46 |
+
return f"No content containing the important words {important_words} was found in the search results."
|
47 |
+
|
48 |
+
return filtered_content
|
49 |
+
|
50 |
+
except Exception as e:
|
51 |
+
return f"Error during optimized web search: {str(e)}"
|