Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -4,26 +4,18 @@ import time
|
|
4 |
|
5 |
import gradio as gr
|
6 |
from transformers import AutoTokenizer, AutoModel
|
7 |
-
import openai
|
8 |
# pytorch library
|
9 |
import torch
|
10 |
import torch.nn.functional as f
|
11 |
|
12 |
-
from fuzzywuzzy import process
|
13 |
|
14 |
from roles_list import roles
|
15 |
-
from openai import OpenAI
|
16 |
# Load the model from the specified directory
|
17 |
embed_store = {}
|
18 |
model = 'sentence-transformers/all-MiniLM-L12-v2'
|
19 |
sbert_model = AutoModel.from_pretrained(model)
|
20 |
sbert_tokenizer = AutoTokenizer.from_pretrained(model)
|
21 |
|
22 |
-
client = OpenAI(
|
23 |
-
# defaults to os.environ.get("OPENAI_API_KEY")
|
24 |
-
api_key="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",
|
25 |
-
)
|
26 |
-
|
27 |
|
28 |
for role in roles:
|
29 |
encoding = sbert_tokenizer(role, # the texts to be tokenized
|
@@ -65,30 +57,6 @@ def get_role_from_sbert(title):
|
|
65 |
return job_scores_str + f" \nExecution time: {str(execution_time)}"
|
66 |
|
67 |
|
68 |
-
def fuzzy_match(title):
|
69 |
-
"""
|
70 |
-
Find the best matches for a query from a list of choices using fuzzy matching.
|
71 |
-
|
72 |
-
Parameters:
|
73 |
-
- query: The search string.
|
74 |
-
- choices: A list of strings to search through.
|
75 |
-
- limit: The maximum number of matches to return.
|
76 |
-
|
77 |
-
Returns:
|
78 |
-
A list of tuples with the match and its score. Higher score means closer match.
|
79 |
-
"""
|
80 |
-
matches = process.extract(title, roles, limit=3)
|
81 |
-
return matches
|
82 |
-
|
83 |
-
|
84 |
-
def fuzzy_match_sbert(title):
|
85 |
-
matches = fuzzy_match(title)
|
86 |
-
sbert_results = get_role_from_sbert(title)
|
87 |
-
|
88 |
-
new_list = [matches, sbert_results]
|
89 |
-
return new_list
|
90 |
-
|
91 |
-
|
92 |
demo = gr.Interface(fn=get_role_from_sbert,
|
93 |
inputs=gr.Textbox(label="Job Title"),
|
94 |
outputs=gr.Textbox(label="Role"),
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
from transformers import AutoTokenizer, AutoModel
|
|
|
7 |
# pytorch library
|
8 |
import torch
|
9 |
import torch.nn.functional as f
|
10 |
|
|
|
11 |
|
12 |
from roles_list import roles
|
|
|
13 |
# Load the model from the specified directory
|
14 |
embed_store = {}
|
15 |
model = 'sentence-transformers/all-MiniLM-L12-v2'
|
16 |
sbert_model = AutoModel.from_pretrained(model)
|
17 |
sbert_tokenizer = AutoTokenizer.from_pretrained(model)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
for role in roles:
|
21 |
encoding = sbert_tokenizer(role, # the texts to be tokenized
|
|
|
57 |
return job_scores_str + f" \nExecution time: {str(execution_time)}"
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
demo = gr.Interface(fn=get_role_from_sbert,
|
61 |
inputs=gr.Textbox(label="Job Title"),
|
62 |
outputs=gr.Textbox(label="Role"),
|