uhith commited on
Commit
121da36
·
verified ·
1 Parent(s): adbf293

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -32
app.py CHANGED
@@ -4,26 +4,18 @@ import time
4
 
5
  import gradio as gr
6
  from transformers import AutoTokenizer, AutoModel
7
- import openai
8
  # pytorch library
9
  import torch
10
  import torch.nn.functional as f
11
 
12
- from fuzzywuzzy import process
13
 
14
  from roles_list import roles
15
- from openai import OpenAI
16
  # Load the model from the specified directory
17
  embed_store = {}
18
  model = 'sentence-transformers/all-MiniLM-L12-v2'
19
  sbert_model = AutoModel.from_pretrained(model)
20
  sbert_tokenizer = AutoTokenizer.from_pretrained(model)
21
 
22
- client = OpenAI(
23
- # defaults to os.environ.get("OPENAI_API_KEY")
24
- api_key="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",
25
- )
26
-
27
 
28
  for role in roles:
29
  encoding = sbert_tokenizer(role, # the texts to be tokenized
@@ -65,30 +57,6 @@ def get_role_from_sbert(title):
65
  return job_scores_str + f" \nExecution time: {str(execution_time)}"
66
 
67
 
68
- def fuzzy_match(title):
69
- """
70
- Find the best matches for a query from a list of choices using fuzzy matching.
71
-
72
- Parameters:
73
- - query: The search string.
74
- - choices: A list of strings to search through.
75
- - limit: The maximum number of matches to return.
76
-
77
- Returns:
78
- A list of tuples with the match and its score. Higher score means closer match.
79
- """
80
- matches = process.extract(title, roles, limit=3)
81
- return matches
82
-
83
-
84
- def fuzzy_match_sbert(title):
85
- matches = fuzzy_match(title)
86
- sbert_results = get_role_from_sbert(title)
87
-
88
- new_list = [matches, sbert_results]
89
- return new_list
90
-
91
-
92
  demo = gr.Interface(fn=get_role_from_sbert,
93
  inputs=gr.Textbox(label="Job Title"),
94
  outputs=gr.Textbox(label="Role"),
 
4
 
5
  import gradio as gr
6
  from transformers import AutoTokenizer, AutoModel
 
7
  # pytorch library
8
  import torch
9
  import torch.nn.functional as f
10
 
 
11
 
12
  from roles_list import roles
 
13
  # Load the model from the specified directory
14
  embed_store = {}
15
  model = 'sentence-transformers/all-MiniLM-L12-v2'
16
  sbert_model = AutoModel.from_pretrained(model)
17
  sbert_tokenizer = AutoTokenizer.from_pretrained(model)
18
 
 
 
 
 
 
19
 
20
  for role in roles:
21
  encoding = sbert_tokenizer(role, # the texts to be tokenized
 
57
  return job_scores_str + f" \nExecution time: {str(execution_time)}"
58
 
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  demo = gr.Interface(fn=get_role_from_sbert,
61
  inputs=gr.Textbox(label="Job Title"),
62
  outputs=gr.Textbox(label="Role"),