Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,23 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
|
|
|
|
|
|
3 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Load Whisper for ASR
|
6 |
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
|
@@ -13,36 +30,343 @@ grammar_pipeline = pipeline("text-classification", model=cola_model, tokenizer=c
|
|
13 |
# Load Grammar Correction Model (T5)
|
14 |
correction_pipeline = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def process_audio(audio):
|
17 |
if audio is None:
|
18 |
-
return
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Step 1: Transcription
|
21 |
-
|
22 |
-
|
|
|
23 |
# Step 2: Grammar Scoring
|
24 |
score_output = grammar_pipeline(transcription)[0]
|
25 |
label = score_output["label"]
|
26 |
confidence = score_output["score"]
|
27 |
-
|
|
|
28 |
# Step 3: Grammar Correction
|
29 |
corrected = correction_pipeline(transcription, max_length=128)[0]["generated_text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
)
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import time
|
5 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
6 |
+
import pandas as pd
|
7 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
8 |
+
import nltk
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
import re
|
11 |
+
|
12 |
+
# Download necessary NLTK data
|
13 |
+
try:
|
14 |
+
nltk.data.find('tokenizers/punkt')
|
15 |
+
except LookupError:
|
16 |
+
nltk.download('punkt')
|
17 |
+
try:
|
18 |
+
nltk.data.find('taggers/averaged_perceptron_tagger')
|
19 |
+
except LookupError:
|
20 |
+
nltk.download('averaged_perceptron_tagger')
|
21 |
|
22 |
# Load Whisper for ASR
|
23 |
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
|
|
|
30 |
# Load Grammar Correction Model (T5)
|
31 |
correction_pipeline = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")
|
32 |
|
33 |
+
# Add sentiment analysis
|
34 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
35 |
+
|
36 |
+
# Add fluency analysis (using BERT)
|
37 |
+
fluency_pipeline = pipeline("text-classification", model="textattack/bert-base-uncased-CoLA")
|
38 |
+
|
39 |
+
# Common English filler words to detect
|
40 |
+
FILLER_WORDS = ["um", "uh", "like", "you know", "actually", "basically", "literally",
|
41 |
+
"sort of", "kind of", "i mean", "so", "well", "right", "okay", "yeah"]
|
42 |
+
|
43 |
+
def count_filler_words(text):
|
44 |
+
"""Count filler words in the text"""
|
45 |
+
text = text.lower()
|
46 |
+
count = 0
|
47 |
+
for word in FILLER_WORDS:
|
48 |
+
count += len(re.findall(r'\b' + word + r'\b', text))
|
49 |
+
return count, count / max(len(text.split()), 1) # Count and ratio
|
50 |
+
|
51 |
+
def calculate_speaking_rate(text, duration):
|
52 |
+
"""Calculate words per minute"""
|
53 |
+
if duration <= 0:
|
54 |
+
return 0
|
55 |
+
words = len(text.split())
|
56 |
+
return (words / duration) * 60 # Words per minute
|
57 |
+
|
58 |
+
def analyze_vocabulary_richness(text):
|
59 |
+
"""Analyze vocabulary richness"""
|
60 |
+
words = word_tokenize(text.lower())
|
61 |
+
if not words:
|
62 |
+
return 0, 0
|
63 |
+
|
64 |
+
# Vocabulary richness (unique words / total words)
|
65 |
+
unique_words = set(words)
|
66 |
+
richness = len(unique_words) / len(words)
|
67 |
+
|
68 |
+
# POS tagging to see variety of word types used
|
69 |
+
pos_tags = nltk.pos_tag(words)
|
70 |
+
pos_counts = {}
|
71 |
+
for _, tag in pos_tags:
|
72 |
+
pos_counts[tag] = pos_counts.get(tag, 0) + 1
|
73 |
+
|
74 |
+
return richness, pos_counts
|
75 |
+
|
76 |
+
def analyze_sentence_complexity(text):
|
77 |
+
"""Analyze sentence complexity"""
|
78 |
+
sentences = re.split(r'[.!?]+', text)
|
79 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
80 |
+
|
81 |
+
if not sentences:
|
82 |
+
return 0, 0
|
83 |
+
|
84 |
+
# Average words per sentence
|
85 |
+
words_per_sentence = [len(s.split()) for s in sentences]
|
86 |
+
avg_words = sum(words_per_sentence) / len(sentences)
|
87 |
+
|
88 |
+
# Sentence length variation (standard deviation)
|
89 |
+
sentence_length_variation = np.std(words_per_sentence) if len(sentences) > 1 else 0
|
90 |
+
|
91 |
+
return avg_words, sentence_length_variation
|
92 |
+
|
93 |
+
def create_detailed_feedback(transcription, grammar_score, corrected_text,
|
94 |
+
sentiment, fluency, filler_ratio, speaking_rate,
|
95 |
+
vocabulary_richness, avg_words_per_sentence):
|
96 |
+
"""Create detailed feedback based on all metrics"""
|
97 |
+
feedback = []
|
98 |
+
|
99 |
+
# Grammar feedback
|
100 |
+
if "acceptable" in grammar_score.lower():
|
101 |
+
feedback.append("✅ Your grammar is good!")
|
102 |
+
else:
|
103 |
+
feedback.append("❗ Your grammar needs improvement. Check the corrections provided.")
|
104 |
+
|
105 |
+
# Fluency feedback
|
106 |
+
if fluency > 0.7:
|
107 |
+
feedback.append("✅ Your speech flows naturally.")
|
108 |
+
else:
|
109 |
+
feedback.append("❗ Work on making your speech more fluid and natural.")
|
110 |
+
|
111 |
+
# Filler words feedback
|
112 |
+
if filler_ratio > 0.1:
|
113 |
+
feedback.append(f"❗ You used too many filler words ({filler_ratio:.1%} of your words).")
|
114 |
+
else:
|
115 |
+
feedback.append("✅ Good job minimizing filler words!")
|
116 |
+
|
117 |
+
# Speaking rate feedback
|
118 |
+
if 120 <= speaking_rate <= 160:
|
119 |
+
feedback.append(f"✅ Your speaking pace is good ({speaking_rate:.0f} words/min).")
|
120 |
+
elif speaking_rate < 120:
|
121 |
+
feedback.append(f"❗ Try speaking a bit faster ({speaking_rate:.0f} words/min is slower than ideal).")
|
122 |
+
else:
|
123 |
+
feedback.append(f"❗ Try speaking a bit slower ({speaking_rate:.0f} words/min is faster than ideal).")
|
124 |
+
|
125 |
+
# Vocabulary feedback
|
126 |
+
if vocabulary_richness > 0.6:
|
127 |
+
feedback.append("✅ Excellent vocabulary diversity!")
|
128 |
+
elif vocabulary_richness > 0.4:
|
129 |
+
feedback.append("✅ Good vocabulary usage.")
|
130 |
+
else:
|
131 |
+
feedback.append("❗ Try using more varied vocabulary.")
|
132 |
+
|
133 |
+
# Sentence complexity feedback
|
134 |
+
if 10 <= avg_words_per_sentence <= 20:
|
135 |
+
feedback.append("✅ Good sentence structure and length.")
|
136 |
+
elif avg_words_per_sentence < 10:
|
137 |
+
feedback.append("❗ Try using more complex sentences occasionally.")
|
138 |
+
else:
|
139 |
+
feedback.append("❗ Your sentences are quite long. Consider varying your sentence length.")
|
140 |
+
|
141 |
+
# Overall sentiment feedback
|
142 |
+
if sentiment == "POSITIVE":
|
143 |
+
feedback.append("✅ Your tone is positive and engaging.")
|
144 |
+
else:
|
145 |
+
feedback.append("ℹ️ Your tone is neutral/negative. Consider if this matches your intent.")
|
146 |
+
|
147 |
+
return "\n".join(feedback)
|
148 |
+
|
149 |
def process_audio(audio):
|
150 |
if audio is None:
|
151 |
+
return {
|
152 |
+
"transcription": "No audio provided.",
|
153 |
+
"grammar_score": "",
|
154 |
+
"corrected": "",
|
155 |
+
"feedback": "",
|
156 |
+
"metrics_chart": None,
|
157 |
+
"detailed_analysis": ""
|
158 |
+
}
|
159 |
+
|
160 |
+
start_time = time.time()
|
161 |
+
|
162 |
+
# Get audio duration (assuming audio[1] contains the sample rate)
|
163 |
+
sample_rate = 16000 # Default if we can't determine
|
164 |
+
if isinstance(audio, tuple) and len(audio) > 1:
|
165 |
+
sample_rate = audio[1]
|
166 |
+
|
167 |
+
# For file uploads, we need to handle differently
|
168 |
+
if isinstance(audio, str):
|
169 |
+
# This is a file path
|
170 |
+
import librosa
|
171 |
+
y, sr = librosa.load(audio, sr=None)
|
172 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
173 |
+
else:
|
174 |
+
# Assuming a tuple with (samples, sample_rate)
|
175 |
+
try:
|
176 |
+
duration = len(audio[0]) / sample_rate if sample_rate > 0 else 0
|
177 |
+
except:
|
178 |
+
duration = 0
|
179 |
+
|
180 |
# Step 1: Transcription
|
181 |
+
transcription_result = asr_pipeline(audio)
|
182 |
+
transcription = transcription_result["text"]
|
183 |
+
|
184 |
# Step 2: Grammar Scoring
|
185 |
score_output = grammar_pipeline(transcription)[0]
|
186 |
label = score_output["label"]
|
187 |
confidence = score_output["score"]
|
188 |
+
grammar_score = f"{label} ({confidence:.2f})"
|
189 |
+
|
190 |
# Step 3: Grammar Correction
|
191 |
corrected = correction_pipeline(transcription, max_length=128)[0]["generated_text"]
|
192 |
+
|
193 |
+
# Step 4: Sentiment Analysis
|
194 |
+
sentiment_result = sentiment_pipeline(transcription)[0]
|
195 |
+
sentiment = sentiment_result["label"]
|
196 |
+
sentiment_score = sentiment_result["score"]
|
197 |
+
|
198 |
+
# Step 5: Fluency Analysis
|
199 |
+
fluency_result = fluency_pipeline(transcription)[0]
|
200 |
+
fluency_score = fluency_result["score"] if fluency_result["label"] == "acceptable" else 1 - fluency_result["score"]
|
201 |
+
|
202 |
+
# Step 6: Filler Words Analysis
|
203 |
+
filler_count, filler_ratio = count_filler_words(transcription)
|
204 |
+
|
205 |
+
# Step 7: Speaking Rate
|
206 |
+
speaking_rate = calculate_speaking_rate(transcription, duration)
|
207 |
+
|
208 |
+
# Step 8: Vocabulary Richness
|
209 |
+
vocab_richness, pos_counts = analyze_vocabulary_richness(transcription)
|
210 |
+
|
211 |
+
# Step 9: Sentence Complexity
|
212 |
+
avg_words, sentence_variation = analyze_sentence_complexity(transcription)
|
213 |
+
|
214 |
+
# Create feedback
|
215 |
+
feedback = create_detailed_feedback(
|
216 |
+
transcription, grammar_score, corrected, sentiment,
|
217 |
+
fluency_score, filler_ratio, speaking_rate, vocab_richness, avg_words
|
218 |
+
)
|
219 |
+
|
220 |
+
# Create metrics visualization
|
221 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
222 |
+
|
223 |
+
# Define metrics for radar chart
|
224 |
+
categories = ['Grammar', 'Fluency', 'Vocabulary', 'Speaking Rate', 'Clarity']
|
225 |
+
|
226 |
+
# Normalize scores between 0 and 1
|
227 |
+
grammar_norm = confidence if label == "acceptable" else 1 - confidence
|
228 |
+
speaking_rate_norm = max(0, min(1, 1 - abs((speaking_rate - 140) / 100))) # Optimal around 140 wpm
|
229 |
+
|
230 |
+
values = [
|
231 |
+
grammar_norm,
|
232 |
+
fluency_score,
|
233 |
+
vocab_richness,
|
234 |
+
speaking_rate_norm,
|
235 |
+
1 - filler_ratio # Lower filler ratio is better
|
236 |
+
]
|
237 |
+
|
238 |
+
# Complete the loop for the radar chart
|
239 |
+
values += values[:1]
|
240 |
+
categories += categories[:1]
|
241 |
+
|
242 |
+
# Convert to radians and plot
|
243 |
+
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
|
244 |
+
angles += angles[:1]
|
245 |
+
|
246 |
+
ax.plot(angles, values, linewidth=2, linestyle='solid')
|
247 |
+
ax.fill(angles, values, alpha=0.25)
|
248 |
+
ax.set_yticklabels([])
|
249 |
+
ax.set_xticks(angles[:-1])
|
250 |
+
ax.set_xticklabels(categories[:-1])
|
251 |
+
ax.grid(True)
|
252 |
+
plt.title('Speaking Performance Metrics', size=15, color='navy', y=1.1)
|
253 |
+
|
254 |
+
# Create detailed analysis text
|
255 |
+
processing_time = time.time() - start_time
|
256 |
+
detailed_analysis = f"""
|
257 |
+
## Detailed Speech Analysis
|
258 |
+
|
259 |
+
**Processing Time:** {processing_time:.2f} seconds
|
260 |
+
**Audio Duration:** {duration:.2f} seconds
|
261 |
|
262 |
+
### Metrics:
|
263 |
+
- **Grammar Score:** {confidence:.2f} ({label})
|
264 |
+
- **Fluency Score:** {fluency_score:.2f}
|
265 |
+
- **Speaking Rate:** {speaking_rate:.1f} words per minute
|
266 |
+
- **Vocabulary Richness:** {vocab_richness:.2f} (higher is better)
|
267 |
+
- **Filler Words:** {filler_count} occurrences ({filler_ratio:.1%} of speech)
|
268 |
+
- **Avg Words Per Sentence:** {avg_words:.1f}
|
269 |
+
- **Sentiment:** {sentiment} ({sentiment_score:.2f})
|
270 |
+
|
271 |
+
### Word Types Used:
|
272 |
+
{', '.join([f"{k}: {v}" for k, v in sorted(pos_counts.items(), key=lambda x: x[1], reverse=True)[:5]])}
|
273 |
+
"""
|
274 |
+
|
275 |
+
return {
|
276 |
+
"transcription": transcription,
|
277 |
+
"grammar_score": grammar_score,
|
278 |
+
"corrected": corrected,
|
279 |
+
"feedback": feedback,
|
280 |
+
"metrics_chart": fig,
|
281 |
+
"detailed_analysis": detailed_analysis
|
282 |
+
}
|
283 |
+
|
284 |
+
# Create theme
|
285 |
+
theme = gr.themes.Soft(
|
286 |
+
primary_hue="blue",
|
287 |
+
secondary_hue="indigo",
|
288 |
+
).set(
|
289 |
+
button_primary_background_fill="*primary_500",
|
290 |
+
button_primary_background_fill_hover="*primary_600",
|
291 |
+
button_primary_text_color="white",
|
292 |
+
block_title_text_weight="600",
|
293 |
+
block_border_width="2px",
|
294 |
+
block_shadow="0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1)",
|
295 |
)
|
296 |
|
297 |
+
with gr.Blocks(theme=theme, css="""
|
298 |
+
.container { max-width: 1000px; margin: auto; }
|
299 |
+
.header { text-align: center; margin-bottom: 20px; }
|
300 |
+
.header h1 { color: #1e40af; font-size: 2.5rem; }
|
301 |
+
.header p { color: #6b7280; font-size: 1.1rem; }
|
302 |
+
.footer { text-align: center; margin-top: 30px; color: #6b7280; }
|
303 |
+
.tips-box { background-color: #f0f9ff; border-radius: 10px; padding: 15px; margin: 10px 0; }
|
304 |
+
.score-card { border: 2px solid #dbeafe; border-radius: 10px; padding: 10px; }
|
305 |
+
""") as demo:
|
306 |
+
gr.HTML("""
|
307 |
+
<div class="header">
|
308 |
+
<h1>🎙️ Advanced ENGLISH Speaking Assessment</h1>
|
309 |
+
<p>Record or upload your speech to receive comprehensive feedback on your English speaking skills</p>
|
310 |
+
</div>
|
311 |
+
""")
|
312 |
+
|
313 |
+
with gr.Row():
|
314 |
+
with gr.Column():
|
315 |
+
audio_input = gr.Audio(
|
316 |
+
sources=["microphone", "upload"],
|
317 |
+
type="filepath",
|
318 |
+
label="🎤 Speak or Upload Audio"
|
319 |
+
)
|
320 |
+
|
321 |
+
with gr.Accordion("Speaking Tips", open=False):
|
322 |
+
gr.HTML("""
|
323 |
+
<div class="tips-box">
|
324 |
+
<h4>Tips for Better Results:</h4>
|
325 |
+
<ul>
|
326 |
+
<li>Speak clearly and at a moderate pace</li>
|
327 |
+
<li>Minimize background noise</li>
|
328 |
+
<li>Try to speak for at least 20-30 seconds</li>
|
329 |
+
<li>Avoid filler words like "um", "uh", "like"</li>
|
330 |
+
<li>Practice with both prepared and impromptu topics</li>
|
331 |
+
</ul>
|
332 |
+
</div>
|
333 |
+
""")
|
334 |
+
|
335 |
+
submit_btn = gr.Button("Analyze Speech", variant="primary")
|
336 |
+
|
337 |
+
with gr.Row():
|
338 |
+
with gr.Column():
|
339 |
+
transcription_output = gr.Textbox(label="📝 Transcription", lines=3)
|
340 |
+
corrected_output = gr.Textbox(label="✍️ Grammar Correction", lines=3)
|
341 |
+
grammar_score_output = gr.Textbox(label="✅ Grammar Score")
|
342 |
+
|
343 |
+
with gr.Row():
|
344 |
+
with gr.Column():
|
345 |
+
metrics_chart = gr.Plot(label="Performance Metrics")
|
346 |
+
with gr.Column():
|
347 |
+
feedback_output = gr.Textbox(label="💬 Feedback", lines=8)
|
348 |
+
|
349 |
+
with gr.Accordion("Detailed Analysis", open=False):
|
350 |
+
detailed_analysis = gr.Markdown()
|
351 |
+
|
352 |
+
gr.HTML("""
|
353 |
+
<div class="footer">
|
354 |
+
<p>This tool provides an assessment of your spoken English. For professional evaluation, consult a qualified language instructor.</p>
|
355 |
+
</div>
|
356 |
+
""")
|
357 |
+
|
358 |
+
submit_btn.click(
|
359 |
+
fn=process_audio,
|
360 |
+
inputs=[audio_input],
|
361 |
+
outputs={
|
362 |
+
"transcription": transcription_output,
|
363 |
+
"grammar_score": grammar_score_output,
|
364 |
+
"corrected": corrected_output,
|
365 |
+
"feedback": feedback_output,
|
366 |
+
"metrics_chart": metrics_chart,
|
367 |
+
"detailed_analysis": detailed_analysis
|
368 |
+
}
|
369 |
+
)
|
370 |
|
371 |
+
if __name__ == "__main__":
|
372 |
+
demo.launch()
|