|
import gradio as gr |
|
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor |
|
from PIL import Image |
|
import torch |
|
import numpy as np |
|
|
|
|
|
processor = SegformerImageProcessor(do_reduce_labels=False) |
|
|
|
|
|
model = SegformerForSemanticSegmentation.from_pretrained( |
|
"nvidia/segformer-b0-finetuned-ade-512-512", |
|
num_labels=7, |
|
ignore_mismatched_sizes=True |
|
) |
|
|
|
|
|
model.load_state_dict(torch.load("trained_model.pt", map_location=torch.device("cpu"))) |
|
model.eval() |
|
|
|
|
|
def segment_image(input_image): |
|
inputs = processor(images=input_image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
|
|
pred_mask = torch.argmax(logits, dim=1)[0].cpu().numpy() |
|
normalized_mask = (pred_mask * (255 // 7)).astype(np.uint8) |
|
|
|
output_image = Image.fromarray(normalized_mask) |
|
|
|
|
|
scale_factor = 3 |
|
new_size = (output_image.width * scale_factor, output_image.height * scale_factor) |
|
bigger_output = output_image.resize(new_size, resample=Image.NEAREST) |
|
|
|
return bigger_output |
|
|
|
|
|
demo = gr.Interface( |
|
fn=segment_image, |
|
inputs=gr.Image(type="pil", label="Upload Blood Smear Image"), |
|
outputs=gr.Image(type="pil", label="Predicted Grayscale Mask"), |
|
title="Malaria Blood Smear Segmentation (Custom SegFormer)", |
|
description="Upload a blood smear image. This app uses a custom trained SegFormer model (7 malaria-specific classes) to segment it.", |
|
examples=["1.png", "2.png", "3.png"], |
|
live=False |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|