haiyiwu's picture
Upload 4 files
ecb7562 verified
from dotenv import load_dotenv
from streamlit_extras.add_vertical_space import add_vertical_space
import streamlit as st
import os
from PIL import Image
#load_dotenv() # take environment variables from .env.
import google.generativeai as genai
#os.getenv("GOOGLE_API_KEY")
#genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
## Function to load Gemini Pro Vision model and get respones
def get_gemini_response(input,image,prompt):
model = genai.GenerativeModel('gemini-pro-vision')
response = model.generate_content([input,image[0],prompt])
return response.text
def input_image_setup(uploaded_file):
# Check if a file has been uploaded
if uploaded_file is not None:
# Read the file into bytes
bytes_data = uploaded_file.getvalue()
image_parts = [
{
"mime_type": uploaded_file.type, # Get the mime type of the uploaded file
"data": bytes_data
}
]
return image_parts
else:
raise FileNotFoundError("No file uploaded")
##initialize our streamlit app
st.set_page_config(page_title="GeminiPro Code Explanation")
with st.sidebar:
st.title('🤗Code Explanation')
st.markdown('''
## About
GeminiPro based chatbot built using:
- [Gemini Pro](https://deepmind.google/technologies/gemini/pro/) LLM model
- [Streamlit](https://streamlit.io/)
''')
add_vertical_space(5)
st.write('Made with ❤️ by Harry')
st.header("Gemini Application")
input=st.text_input("Input Prompt: ",key="input")
uploaded_file = st.file_uploader("Choose an image contains a snippet of your code...", type=["jpg", "jpeg", "png"])
image=""
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image.", use_column_width=True)
submit=st.button("Tell me what the code is doing")
input_prompt = """
You are an expert in algorithms and can explain different code
"""
## If ask button is clicked
if submit:
image_data = input_image_setup(uploaded_file)
response=get_gemini_response(input_prompt,image_data,input)
st.subheader("The Response is")
st.write(response)