File size: 82,551 Bytes
db9e325
e29723f
31e7792
b2c23d9
55b4077
 
 
31e7792
db9e325
e29723f
db9e325
e29723f
 
 
911253b
 
 
 
 
 
 
 
 
 
 
 
e29723f
911253b
 
 
 
 
a5ce67c
911253b
 
 
 
 
 
 
 
 
 
 
d758b45
414089c
b8484bf
 
 
 
 
 
 
 
414089c
 
 
 
 
 
 
 
db9e325
9463b76
 
 
 
 
 
e29723f
 
 
 
 
08858a0
 
e29723f
08858a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e29723f
08858a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e29723f
9463b76
 
 
 
 
08858a0
e29723f
 
 
 
 
 
bb0ed14
 
 
 
 
 
 
 
 
c201e4c
bb0ed14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69f2239
f2259ac
69f2239
 
bb0ed14
f2259ac
e29723f
 
 
 
 
ce4df21
04b689e
ce4df21
74fb91f
ce4df21
 
 
74fb91f
ce4df21
 
 
 
486ccb0
ce4df21
 
 
 
 
 
 
 
 
486ccb0
ce4df21
 
486ccb0
74fb91f
 
486ccb0
 
 
74fb91f
 
 
486ccb0
 
 
e29723f
ce4df21
 
 
9463b76
 
 
 
 
 
e29723f
 
 
 
 
 
 
 
 
 
 
334b087
 
 
 
 
 
 
 
140a95d
334b087
 
 
 
 
140a95d
334b087
 
 
 
140a95d
 
334b087
140a95d
334b087
140a95d
334b087
 
140a95d
334b087
 
140a95d
334b087
140a95d
 
334b087
140a95d
334b087
140a95d
 
 
 
334b087
 
140a95d
334b087
 
140a95d
334b087
 
140a95d
334b087
140a95d
334b087
 
140a95d
 
334b087
140a95d
 
334b087
140a95d
334b087
140a95d
 
 
 
334b087
 
140a95d
9463b76
 
 
 
 
 
1749ad2
 
e29723f
 
 
 
 
 
 
 
 
 
7f28719
 
 
 
 
 
 
 
 
 
bf61356
7f28719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b19b54
7f28719
 
 
 
2b19b54
 
aa140e4
 
7f28719
bf61356
 
 
 
 
 
 
 
 
 
11f9713
bf61356
 
 
 
 
 
 
 
 
 
8a70c80
 
 
bf61356
11f9713
 
 
 
 
 
 
 
 
 
 
 
fca0995
 
 
11f9713
ad0c3b0
783fb2f
11f9713
157d6fd
 
11f9713
 
fca0995
 
11f9713
ad0c3b0
 
 
783fb2f
 
11f9713
157d6fd
 
 
11f9713
 
783fb2f
fca0995
c98b109
 
11f9713
783fb2f
 
 
11a9a4c
 
 
 
11f9713
ad0c3b0
c98b109
aa140e4
7f28719
c666782
7f28719
21e094d
 
 
 
 
 
 
 
 
 
7f28719
 
 
 
 
21e094d
 
7f28719
21e094d
 
 
 
7f28719
 
 
bf61356
 
 
 
7f28719
21e094d
 
 
7f28719
 
21e094d
 
 
 
 
 
 
 
7f28719
 
21e094d
7f28719
bf61356
 
 
 
7f28719
21e094d
 
 
7f28719
21e094d
 
7f28719
21e094d
 
bf61356
 
 
21e094d
 
 
bf61356
7f28719
 
 
bf61356
 
 
7f28719
 
21e094d
7f28719
21e094d
bf61356
 
 
 
 
 
 
21e094d
 
7f28719
21e094d
 
 
 
 
 
 
 
7f28719
 
 
 
 
 
 
 
 
 
 
 
 
bf61356
 
 
7f28719
bf61356
 
 
 
 
 
 
 
 
 
 
 
 
 
7f28719
 
 
 
bf61356
 
 
 
 
 
 
 
 
 
7f28719
 
 
 
 
 
bf61356
 
 
 
 
 
 
7f28719
29c4c71
 
 
 
 
7f28719
 
bf61356
 
 
 
 
 
 
 
 
7f28719
 
bf61356
7f28719
 
bf61356
7f28719
 
 
89f9d0c
bf61356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f28719
bf61356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f28719
bf61356
 
 
 
 
 
 
 
 
 
 
7f28719
bf61356
7f28719
bf61356
 
 
 
 
7f28719
bf61356
 
a3e9a7d
bf61356
7f28719
bf61356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f28719
 
b06dcde
8a70c80
a3e9a7d
 
 
 
11a9a4c
a3e9a7d
11a9a4c
 
a3e9a7d
 
 
 
 
 
 
 
 
 
 
 
 
 
11a9a4c
a3e9a7d
 
 
 
 
11a9a4c
a3e9a7d
 
 
 
 
11a9a4c
 
a3e9a7d
 
 
 
8a70c80
 
 
 
 
 
 
 
 
 
 
 
bf61356
8a70c80
 
 
 
3f6d752
8a70c80
bf61356
7f28719
 
 
e29723f
 
 
fa40f07
9aaa374
bc6c0bc
945277f
fa40f07
 
bc6c0bc
e80ceac
 
 
 
 
bc6c0bc
 
 
 
945277f
bc6c0bc
 
 
945277f
 
bc6c0bc
945277f
bc6c0bc
 
945277f
bc6c0bc
 
945277f
bc6c0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4929e2b
fa40f07
bc6c0bc
 
 
 
 
 
 
 
 
 
4929e2b
bc6c0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a0f836
bc6c0bc
29c4c71
 
 
 
 
 
4929e2b
bc6c0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa40f07
945277f
fa40f07
bc6c0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
945277f
bc6c0bc
29c4c71
 
 
 
 
fa40f07
bc6c0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa40f07
4929e2b
bc6c0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a0f836
 
fa40f07
8dcbcf2
bc6c0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a0f836
 
bc6c0bc
945277f
fa40f07
bc6c0bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0249cda
bc6c0bc
 
 
 
 
 
 
 
4a0f836
bc6c0bc
29c4c71
 
 
 
9708550
 
 
1a70c54
 
bc6c0bc
b5f0e5c
648a44c
 
 
1a70c54
 
 
e29723f
1a70c54
e29723f
1a70c54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53601b7
 
1a70c54
 
 
 
 
 
 
 
e6c9b3a
1a70c54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53601b7
e6c9b3a
88fde66
 
 
 
 
 
 
61e591e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a70c54
61e591e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd6d79
61e591e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb098f8
55b4077
 
fb098f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b4077
 
 
fb098f8
 
 
 
 
 
 
 
55b4077
 
fb098f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b4077
fb098f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b4077
 
 
 
fb098f8
 
 
607bb85
 
e29723f
 
 
 
cced416
 
 
 
 
 
 
 
 
 
7906df1
 
 
b5f0e5c
 
 
 
 
 
 
 
 
29c478e
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f0e5c
a044396
 
7906df1
 
8497e0a
 
 
 
 
 
 
 
 
29c478e
 
 
 
8497e0a
29c478e
 
 
 
 
8497e0a
7906df1
29c478e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae48d0
 
67adddc
 
 
 
 
 
 
 
 
 
 
 
 
8ae48d0
29c478e
67adddc
a044396
 
 
 
 
 
 
 
7906df1
 
b5f0e5c
6310ce8
 
 
 
 
 
 
 
 
 
b5f0e5c
6310ce8
bb3e46f
29c478e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a044396
 
 
 
7906df1
 
b5f0e5c
e29723f
 
 
db9e325
e29723f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f0e5c
 
88fde66
 
b5f0e5c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import cv2
import io
import zipfile
import numpy as np


# Define functions for individual pages

# Structured Data - Excel Page
def excel_details_page():
    st.title("Structured Data - Excel Details")

    st.markdown("<h3 style='text-align:; color: #4a90e2;'>1. Handling Excel Files (.xlsx)</h3>", unsafe_allow_html=True)
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>Excel Files are (XLSX) Created using the Microsoft Excel application.</li>
        <li>Structured data format.</li>
        <li>Excel files automatically handle encoding during creation, so no encoding issues arise.</li>
        <li>If there are extra values in a row, Excel creates a new column and fills it with <b>null values</b> instead of throwing a <b>parsing error</b>.</li>
    </ul>
    """, unsafe_allow_html=True)

    st.markdown("<h3 style='text-align:; color: #ffa500;'>2. Reading Excel Files (.xlsx)</h3>", unsafe_allow_html=True)
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>Use the <b>pandas</b> function, <b>pd.read_excel("path")</b>, to read an Excel file.</li>
        <li>By default, it reads only one sheet.</li>
        <li>To read multiple sheets, specify the <b>sheet_name</b> parameter with a list of sheet indices.</li>
    </ul>""", unsafe_allow_html=True)

    st.code('df = pd.read_excel("path", sheet_name=[0, 1, 2])', language="python")

    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li><b>The Result is a Dictionary</b></li>
        <li>Keys: Sheet names.</li>
        <li>Values: DataFrames corresponding to each sheet.</li>
    </ul>""", unsafe_allow_html=True)

    st.code('df_first_sheet = df[0]  # First sheet\n' 
            'df_second_sheet = df[1]  # Second sheet\n'
            'df_third_sheet = df[2]  # Third sheet', language="python")

    st.markdown("<h3 style='text-align:; color: #dda0dd;'>3. Converting Data to Excel Files (.xlsx)</h3>", unsafe_allow_html=True)
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>To save a single DataFrame to an Excel file</li>
    </ul>""", unsafe_allow_html=True)

    st.code('df[0].to_excel("path")', language="python")

    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>To save multiple sheets, use <b>pd.ExcelWriter</b></li>
    </ul>""", unsafe_allow_html=True)

    st.code("""with pd.ExcelWriter("path") as writer:
    df[0].to_excel(writer, sheet_name="Sheet1")
    df[1].to_excel(writer, sheet_name="Sheet2")""", language="python")

    st.markdown("<h5 style='color:black;'>Download Jupyter Notebook or PDF with Code Examples</h5>", unsafe_allow_html=True)
    notebook_url = "https://colab.research.google.com/drive/1gkwpP7dFNXwQ7EgmXw-Mh9ifENAMVg8I"
    st.write("Click below for Jupyter notebook:")
    st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})")


    if st.button("Back to Home"):
        st.session_state['page'] = "home"

# Semi-Structured Data - CSV Page
def csv_details_page():
        # Display the content about semi-structured data
    st.header("1. What is Semi-Structured Data?")
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>Semi-structured data does not follow a strict tabular format but still has some organizational properties.</li>
        <li>Examples include CSV files, JSON, and XML.</li>
    </ul>
    """, unsafe_allow_html=True)

    st.header("2. Working with CSV Files")
    st.subheader("a) Reading a CSV File")
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>Use the <b>pandas</b> function, <code>pd.read_csv("file.csv")</code>, to read a CSV file.</li>
        <li>This function loads the file into a DataFrame.</li>
    </ul>
    """, unsafe_allow_html=True)

    # Code example for reading CSV
    st.code("""
import pandas as pd
df = pd.read_csv("file.csv")
print(df.head())
    """, language="python")

    st.subheader("b) Handling Parse Errors")
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>If extra value is added to a row a <code> Parsing Error </code> </li>
        <li>It happens when we create csv with the help of <code> text editors </code> .</li>
        <li>If we add extra value to row it don't throw error instead it creates the new column for extra value it fills with <b> null</b> when converted from excel to csv.</li>
    </ul>
    """, unsafe_allow_html=True)

    st.markdown("""
    <p><b>Solution:</b> Use the <code>on_bad_lines</code> parameter in pandas:</p>
    <ul style="font-family: Arial; line-height: 1.6;">
        <li><code>"error"</code>: Stops the program and raises an error.</li>
        <li><code>"skip"</code>: Skips rows with errors.</li>
        <li><code>"warn"</code>: Skips rows with errors and shows the line numbers.</li>
    </ul>
    """, unsafe_allow_html=True)

    # Code example for handling parse errors
    st.code("""

# Skip bad lines
df = pd.read_csv("file.csv", on_bad_lines="skip")

# Warn about bad lines
df = pd.read_csv("file.csv", on_bad_lines="warn")
    """, language="python")

    st.subheader("c) Unicode Decode Error")
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>Each character, when saved, is represented by a unique number (ASCII/Unicode code point).</li>
        <li> ord("a") → 97 , bin(97) → 0b1100001 (Binary representation of 'a') </li>
        <li>Characters are saved in memory using a specific encoding, typically UTF-8 by default.</li>
        <li>Unicode Decode Error: Occurs when the system is unable to decode a file due to an incorrect or incompatible encoding.To solve this, you need to find the appropriate encoding for the file.</li>
        <li>Python uses utf-8 by default for encoding, but files may be saved with other encodings.</li>
        <li><code>Using the encodings module</code>: To explore the available encodings, you can import encodings in Python</li>
        <li> There are <code>326</code> different encoding aliases available in Python, which can be accessed via <code>encodings.aliases.aliases.,/code></li>
    </ul>
    """, unsafe_allow_html=True)

    # Code example for trying multiple encodings
    st.code("""
import encodings

# Get all encodings
encodings_list = list(encodings.aliases.aliases.keys())

# Try reading the file with different encodings
for encoding in encodings_list:
    try:
        df = pd.read_csv("file.csv", encoding=encoding)
        print(f"Success with encoding: {encoding}")
        break
    except:
        pass  # Skip to the next encoding
    """, language="python")

    st.subheader("Lookup Error:")
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>Occurs if you try to access an encoding that is not available or supported.</li>
        <li>Use a try-except block to handle it gracefully</li>
    </ul>
    """, unsafe_allow_html=True)

    st.code(''' 
          except LookupError:
              print("Incorrect Encoding".format(y))
              ''')

    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>After this when we get <code> Parse error </code> to solve that error add <code> on_badlines = "skip" parametre </code> .</li>
    </ul>
    """, unsafe_allow_html=True)

    st.subheader("d) Handling Large CSV Files")
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>When working with large CSV files, the file might not fit into memory, leading to a <code>MemoryError</code>.</li>
        <li><code>Solution: Use chunksize to break the file into smaller chunks.</code></li>
        <li>: To handle each chunk, you can iterate through the chunks and process them as needed.</li>
    </ul>
    """, unsafe_allow_html=True)

    # Code example for handling large files
    st.code("""

chunk_size = 100
chunks = pd.read_csv("large_file.csv", chunksize=chunk_size)

for i, chunk in enumerate(chunks):
    print(f"Processing chunk {i + 1} with {chunk.shape[0]} rows")
    """, language="python")

    st.header("3. Summary")
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li><b>Parse Errors:</b> Use <code>on_bad_lines</code> to handle them (<code>skip</code> or <code>warn</code>).</li>
        <li><b>Encoding Issues:</b> Try different encodings to fix <b>UnicodeDecodeError</b>.</li>
        <li><b>Large Files:</b> Use <code>chunksize</code> to process files in smaller parts.</li>
    </ul>
    """, unsafe_allow_html=True)

    st.markdown("<h5 style='color:black;'>Download Jupyter Notebook or PDF with Code Examples</h5>", unsafe_allow_html=True)
    notebook_url = "https://colab.research.google.com/drive/1pXrfcADbDzHzB-Q_oOBZyi7_97uZgRG7#scrollTo=b8491518"
    st.write("Click below for Jupyter notebook:")
    st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})")

 # Button to go back to the main page
    if st.button("Back to Home"):
        st.session_state['page'] = "home"

# Semi-Structured Data - JSON Page
def json_details_page():

    import pandas as pd
    import requests
    
    # Page configuration
    st.set_page_config(page_title="JSON & API Tutorial", layout="wide")
    
    # Define colors
    main_heading_color = "blue"
    sub_heading_color = "green"
    bullet_point_color = "white"
    
    # Main Title
    st.markdown(f"<h1 style='color:{main_heading_color};'>JSON and API Tutorial</h1>", unsafe_allow_html=True)
    
    # Section 1: Handling JSON Files
    st.markdown(f"<h2 style='color:{sub_heading_color};'>Handling JSON Files</h2>", unsafe_allow_html=True)
    st.markdown(f"<h3 style='color:{sub_heading_color};'>Introduction</h3>", unsafe_allow_html=True)
    st.markdown(
        f"<ul style='color:{bullet_point_color};'>"
        f"<li>JSON (JavaScript Object Notation) is the second most commonly used data format after CSV.</li>"
        f"<li>It is widely used, especially in APIs.</li>"
        f"<li>JSON data can be either structured or semi-structured.</li>"
        f"</ul>",
        unsafe_allow_html=True,
    )
    
    st.markdown(f"<h3 style='color:{sub_heading_color};'>Default JSON Format</h3>", unsafe_allow_html=True)
    st.code('{"Name": ["P1", "P2"], "Age": [23, 24]}', language="json")

    # Code example for reading JSON
    st.markdown(f"<h3 style='color:{sub_heading_color};'>Reading JSON Files in Python</h3>", unsafe_allow_html=True)
    st.code(
        """
    import pandas as pd
    data = '{"Name": ["P1", "P2"], "Age": [23, 24]}'
    df = pd.read_json(data)
    print(df)
    """,
        language="python",
    )
    
    # Section 2: JSON Formats in Pandas
    st.markdown(f"<h2 style='color:{sub_heading_color};'>JSON Formats in Pandas</h2>", unsafe_allow_html=True)
    st.markdown(
        f"<ul style='color:{bullet_point_color};'>"
        f"<li><b>Orient = 'index':</b> Indices become main keys and column names become subkeys.</li>"
        f"<li><b>Orient = 'columns':</b> Column names become main keys and indices become subkeys.</li>"
        f"<li><b>Orient = 'values':</b> JSON is converted as a list of values.</li>"
        f"<li><b>Orient = 'split':</b> Stores data along with columns and indices.</li>"
        f"</ul>",
        unsafe_allow_html=True,
    )
    
    # Section 3: Collecting Data from APIs
    st.markdown(f"<h2 style='color:{sub_heading_color};'>Collecting Data from APIs</h2>", unsafe_allow_html=True)
    st.markdown(
        f"<ul style='color:{bullet_point_color};'>"
        f"<li>API (Application Programming Interface) is a bridge that enables communication between two applications.</li>"
        f"<li>It uses HTTP protocols to exchange data securely.</li>"
        f"<li>If the response code is <b>200</b>, the request was successful.</li>"
        f"<li>For accessing secure data, you may need an API key.</li>"
        f"</ul>",
        unsafe_allow_html=True,
    )
    
    # Code example for using an API
    st.markdown(f"<h3 style='color:{sub_heading_color};'>Example: Fetching Data from an API</h3>", unsafe_allow_html=True)
    st.code(
        """
    import requests
    import pandas as pd
    
    url = "https://api.example.com/data"
    response = requests.get(url)
    
    if response.status_code == 200:
        data = response.json()
        df = pd.json_normalize(data)
        print(df)
    else:
        print(f"Failed to fetch data. Status code: {response.status_code}")
    """,
        language="python",
    )
    
    # Google Colab Link
    st.markdown("<h5 style='color:black;'>Download Jupyter Notebook or PDF with Code Examples</h5>", unsafe_allow_html=True)
    notebook_url = "https://colab.research.google.com/drive/1pIg_zmj04lVmPTdiTU2bU9BLAR2mS5wi?usp=sharing"
    st.write("Click below for Jupyter notebook:")
    st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})")
    
   
    if st.button("Back to Home"):
        st.session_state['page'] = "home"

# Semi-Structured Data - XML Page

def xml_details_page():
    st.title("Semi Structured Data - XML Details")

    st.markdown("<h1 style='text-align:; color: blue;'>Handling XML Files(.xlsx)</h1>", unsafe_allow_html=True)    
    st.markdown("<h2 style='color: green;'>What is XML?</h2>", unsafe_allow_html=True)
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li>XML (Extensible Markup Language) is a markup language used for storing and transporting semi-structured data.</li>
        <li><code>XML</code> is a markup language, meaning it uses tags to define the structure and content of data.</li>
        <li> It is semi-structured, meaning it has a flexible structure that can be defined by the user.</li>
        <li>Tags are not predefined, allowing users to create their own custom tags.</li>
    </ul>
    """, unsafe_allow_html=True)

    st.markdown("<h3 style='text-align:; color: #ffa500;'>Basic Structure of XML(.xlsx)</h3>", unsafe_allow_html=True)
    st.markdown("""
    <ul style="font-family: Arial; line-height: 1.6;">
        <li> XML documents consist of elements, which are represented by <b>tags</b>.</li>
        <li> Tags have an opening and closing tag, with the content enclosed within.</li>
        <li>The basic structure of an XML tag is: `<openingtag>content</closingtag>`</li>
    </ul>""", unsafe_allow_html=True)

    st.markdown("<h2 style='color: orange;'>Example of XML Data</h2>", unsafe_allow_html=True)

    st.code("""<persons>
        <person>
            <name>HARI </name>
            <age>22</age>
            <gender>Male</gender>
        </person>
        <person>
            <name>CHANDAN</name>
            <age>21</age>
            <gender>Male</gender>
        </person>
    </persons>
    """, language="xml")




    # Google Colab Link
    st.markdown("<h5 style='color:blue;'>Download Jupyter Notebook or PDF with Code Examples</h5>", unsafe_allow_html=True)
    notebook_url = "https://colab.research.google.com/drive/14xGAxu_rKAl_eslODfQXoTEpN7NU4lk6"
    st.write("Click below for Jupyter notebook:")
    st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})")

    if st.button("Back to Home"):
        st.session_state['page'] = "home"

# Semi-Structured Data - HTML Page
def html_details_page():
    st.title("Semi-Structured Data - HTML Details")
    st.markdown("""
    **HTML** (HyperText Markup Language) is used to structure web pages.

    - Semi-structured data with nested tags.
    """)
    

    # App title
    st.title("Working with HTML Data in Python")
    
    # Section: HTML and DataFrames
    st.header("HTML and DataFrames")
    
    st.write("""
    - **HTML** stands for HyperText Markup Language and is a semi-structured format.  
    - HTML uses tags like `<table>`, `<tr>`, `<th>`, and `<td>` to show table data.  
    - Unlike XML, HTML doesn’t let you create any custom tags.  
    - Not all HTML can be changed into dataframes, especially plain text like paragraphs.  
    - Usually, only table-related tags (`<table>`, `<tr>`, `<th>`, `<td>`) can be converted into dataframes.
    """)
    
    # Section: Reading HTML Files
    
    st.write("**How to Read HTML Files:**")
    st.code("""
    import pandas as pd
    tables = pd.read_html("path_or_url")
    """, language="python")
    
    st.write("""
    - Use `pd.read_html()` to read tables from an HTML file or a website.  
    - This function collects all tables and gives them as a list of dataframes.
    """)
    
    st.write("**How to Get Specific Tables:**")
    st.code("""
    # Select the first table from the list
    table = tables[0]
    """, language="python")
    
    st.write("""
    - The tables are stored as a list, and you can access them using their index number.
    """)

    st.write("**Limitations:**")
    st.write("""
    - Some HTML files or websites cannot be read, even if they have tables.  
    - Issues like file permissions or restrictions may stop reading.
    """)
    
    st.write("**Using `match` to Find Specific Tables:**")
    st.code("""
    # Read a specific table by searching for a keyword
    tables = pd.read_html("path_or_url", match="keyword")
    """, language="python")
    
    st.write("""
    - The `match` parameter lets you find tables with specific keywords.  
    - This is useful to pick the right table when many are present.
    """)
    
    # Section: Exporting DataFrames
    st.header("Exporting DataFrames to HTML")
    
    st.write("**How to Export a DataFrame to HTML:**")
    st.code("""
    # Save a dataframe as an HTML file
    df.to_html("output.html")
    """, language="python")
    
    st.write("""
    - This converts your dataframe into an HTML file.  
    - You can save the HTML file at a specified location.
    """)

    # Google Colab Link
    st.markdown("<h5 style='color:red;'>Download Jupyter Notebook or PDF with Code Examples</h5>", unsafe_allow_html=True)
    notebook_url = "https://colab.research.google.com/drive/1IgIEoWqw-pHSSMjuWzY2FlFJVIoNwL3C"
    st.write("Click below for Jupyter notebook:")
    st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})")
    if st.button("Back to Home"):
        st.session_state['page'] = "home"

# Unstructured Data - Image Page
def image_details_page():
    st.title("Unstructured Data - Image Details")
    st.markdown("""
    **Images** are unstructured data represented in pixel values.

    - Formats include JPEG, PNG, BMP, etc.
    - Libraries like OpenCV and PIL are used for image processing.
    """)
    
    import numpy as np
    
    # Helper function for subheadings
    def subheading(text):
        """Displays a subheader with consistent styling."""
        st.markdown(f"<h3 style='color:teal;'>{text}</h3>", unsafe_allow_html=True)
    
    # Sidebar for navigation
    st.sidebar.title("Navigation")
    page = st.sidebar.radio("Go to", ["Introduction", "Basic Operations","Image Conversions"])
    
    # App Title and Description
    st.title("Image Processing Fundamentals")
    st.write("""
    This app introduces the basics of image processing, helping you understand how images are formed, represented, and handled programmatically. 
    It's designed for beginners exploring computer vision concepts.
    """)
    
    # Introduction Section
    if page == "Introduction":
        st.header("Introduction")
        st.write("""
        Images play a crucial role in various fields, including art, science, and technology.  
        In this app, you will learn:
        - How images are captured and represented.
        - Different color spaces and their applications.
        - Basic operations on images using Python libraries.
        """)
    
        st.header("Understanding Images")
        
        # Subsections
        subheading("What is an Image?")
        st.write("""
        An image is a **2D representation of light**, created when light reflects off an object and is captured by a camera or our eyes.
        """)
    
        subheading("How is an Image Formed?")
        st.write("""
        - **Light Source**: Light from sources like the sun or a bulb hits an object.
        - **Reflection**: Light bounces off the object's surface.
        - **Capture**: The reflected light is recorded by a camera sensor or the human eye.
        - In images pixels are the **feautures** and these pixels contains **information** as shape,color,patterns.No of pixels = height*width these both decides the resolution.More no of pixels more clarity more information gained.
        """)
    
        subheading("Why is an Image Represented as a Grid?")
        st.write("""
        - Pixels in an image are arranged in a grid-like structure.Each **row** in the grid corresponds to a **data point** (a group of pixels).Each **column** in the grid represents a **feature** of those data points.
        - Both image data and tabular data can be visualized as grids.This concept aligns with tabular data, where the structure is similar, but the interpretation differs:
        - **In images**: Each row represents a set of data points (pixels), and the columns represent their features.
        - **In tables**:Each row represents an individual data point, and each column corresponds to a feature of that data point.
        """)

        st.subheader("Interactive Pixel Grid")
    
        # User Input for Height and Width
        height = st.number_input("Enter Image Height (pixels):", min_value=1, max_value=50, value=10, step=1)
        width = st.number_input("Enter Image Width (pixels):", min_value=1, max_value=50, value=10, step=1)
        
        # Display Resolution
        resolution = height * width
        st.write(f"**Image Resolution**: {resolution} pixels")
        
        # Generate and Display Pixel Grid
        st.write("**Pixel Grid Visualization:**")
        grid = np.random.rand(int(height), int(width))  # Generate random grid values
        fig, ax = plt.subplots()
        cax = ax.imshow(grid, cmap="magma")  
        plt.colorbar(cax, ax=ax)  # Add color bar for context
        ax.set_title("Pixel Grid")
        ax.set_xlabel("Width(pixels)", fontsize=8)  # Set smaller font size
        ax.set_ylabel("Height(pixels)", fontsize=8)  # Set smaller font size

         # Render the Plot
        st.pyplot(fig)

    
        st.header("Color Spaces")
        
        # Explanation for Color Spaces
        st.write("""
        Color space is a technique used to represent the colors of an image. This technique helps us preserve the colors while converting them into numerical values, which machine learning models can understand.
        
        For example, in image classification tasks like differentiating between dogs and cats:
        - The first step is to collect a bunch of dog and cat images. These images may be in formats such as PNG, JPG, or JPEG.
        - However, machine learning models can only understand numbers, so color spaces are used to convert the image colors into numerical representations.
        """)
        
        # Subheading for Black and White color space

        st.markdown("<h3 style='text-align:; color: #4a90e2;'>1. Black and White</h3>", unsafe_allow_html=True)

        st.write("""
        - Represents only two colors: **Black (0) Pixels** and **White (255) Pixels**.
        - **Limitation**: It only preserves black and white.
        """)

        st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/blackwhite.jpg")
        
        # Subheading for Grayscale color space
        st.markdown("<h3 style='text-align:; color: #4169E1;'>2. Grayscale</h3>", unsafe_allow_html=True)

        st.write("""
        - 0 pixel value means Black: It represents the darkest shade in a grayscale image.
        - 1 piexel value means White: It represents the brightest shade in a grayscale image.
        - Pixel Values between 1 and 254: These Pixel values represent various shades of gray, with increasing brightness as the value approaches 254.
        - **Limitation**:
        - Gray Scale images cannot preserve coloured images as it is having only gray shades
        """)

        st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/grayscale.jpeg")

        
        # Subheading for RGB color space
        st.markdown("<h3 style='text-align:; color: #483D8B;'>3. RGB </h3>", unsafe_allow_html=True)

        st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/bunny.jpg")

        st.write("""
        - To represent coloured image we have to convert image in 3D array , Mixture of three 2D arrays is **RGB**.
        - The value in each array ranges from R(0,255) ,G(0,255) ,B(0,255) 
        - By mixing different intensities of red, green, and blue,we can create over **16 million possible colors**.
        - The **Red channel** has pixel values with red set to 255, and green and blue to 0. 
        - The **Green channel** has pixel values with green set to 255, and red and blue to 0. 
        - The **Blue channel** has pixel values with blue set to 255, and red and green to 0. 
        - When merged, these channels form a complete color image.
        """)

        st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/bunny1.jpg")        
        
    # Basic Operations Section
    elif page =="Basic Operations":
        
    
        st.title("What is OpenCV?")
        st.header("Understanding Open Source Computer Vision")
        
        # Introduction
        st.write("""
        OpenCV (Open Source Computer Vision) is a free and open-source library designed for real-time computer vision tasks. 
        It is widely used in industries like healthcare, security, robotics, and AI to process images and videos effectively.
        """)

        st.code(""" 
        import cv2
        import numpy as np
        """)
        
        # Features Section
        st.subheader("Key Features of OpenCV:")
        st.markdown("""
        - **Image Processing**: Resize, crop, filter, and manipulate images easily.  
        - **Object Detection**: Detect faces, objects, and track their movements in real-time.  
        - **Video Analysis**: Perform video stabilization, motion detection, and frame-by-frame analysis.  
        - **Machine Learning Integration**: Combine with AI frameworks for advanced tasks like face recognition and augmented reality.  
        """)
        
        # Theory Section
        st.markdown("""
        <h3 style="color:  #9400d3;"> Reading an image</h3>
        """, unsafe_allow_html=True)
        
        st.markdown("""
        - It converts an 2D image into Machine representation value array.
        - **cv2.imread("path)** this method going to convert image to 3D aray as it used default colour space **RGB**.
        - The data type of image should be **uint8**.
        """)
        st.code("""
        # Code to read an image
        img = cv2.imread('BGR_image', 1)  # by default it considers this as coloured image
        print(img)
         """)

        st.code("""
        img = cv2.imread("gray_scale_image",0)  # when we want it in 2D array use parametre `flags=0` it considers as grayscale image
        print(img)
        """)
        
        
        # Theory Section
        st.markdown("""
        <h3 style="color: #FF7F00;"> imshow()</h3>
        """, unsafe_allow_html=True)
        
        st.markdown("""
        - After creating or reading an image, we can display it using OpenCV. Here’s how the key functions work together:
        - The `imshow()` function creates a pop-up window to display the image.
        - Internally, it converts the numerical array into a visual image.
        - **Parameters**:
        Window Name: Title of the pop-up window (string).
        Image Array: The array representing the image.
        """)

        # Theory Section
        st.markdown("""
        <h3 style="color: #FF7F00;"> waitkey()</h3>
        """, unsafe_allow_html=True)
        st.markdown("""
        - The main purpose Waits for a key press and adds a delay before closing the pop-up window.
        - `waitKey(0)` or `waitKey()` Keeps the window open indefinitely until a key is pressed.
        - `waitkey(10)` After 10 milli seconds the pop up window will be closed when we use waitkey(n) after n milliseconds window closes.
        """)
        
        # Theory Section
        st.markdown("""
        <h3 style="color: #FF7F00;"> destroyAllWindows()</h3>
        """, unsafe_allow_html=True)
        st.markdown("""
        - **Purpose**: Closes all OpenCV-created windows.
        - **Usage**:This makes sure that memory is cleared and helps avoid crashes by getting rid of resources when the image is no longer needed.
        """)

        st.code("""
        cv2.destroyAllWindows() # When we give this all temporary windows will be closed
        """)
        
        st.markdown("""
        <h5 style='color: green;'>These three functions must work together to display and manage images effectively. /h5>
        """, unsafe_allow_html=True)

        
        st.code("""
        img = cv2.imshow("Window name",image)

        # Window name : Name of the window
        # image : The image we created

       # Code to wait for a key press
        cv2.waitKey()  # Wait indefinitely until key press
        
        # Code to close all windows
        cv2.destroyAllWindows()  # Close all OpenCV windows
        """)
        
        st.markdown("""
        ### Additional Notes
        - **Why Use `cv2.waitKey`?**  
          Without this, the image display window will close immediately after the program finishes execution.
          
        - **Handling Pop-Up Windows**  
          - Use `cv2.destroyAllWindows()` to close all pop-up windows and release system resources properly.
        """)
    
        st.markdown("""
        <h3 style="color: #9400d3;">Saving an Image</h3>
        """, unsafe_allow_html=True)
    
        # About imwrite() function
        st.write("""
        To save an image file in OpenCV, we use the **imwrite()** function.  
        It converts the numerical array (image data) back into an image file format, such as `.jpg`, `.png`, or `.bmp`.
        """)
        
        # Code example
        st.code("""
        
        cv2.imwrite('image.jpg', image_array)  # 'image.jpg' it is the name of the output file
        print("Wow your image is saved!")
        """, language="python")

    elif page =="Image Conversions":
    
        from PIL import Image
        
        # Title of the app
        st.markdown("""
        <h3 style="color: #9400d3;">Creating a Black and White Image</h3>
        """, unsafe_allow_html=True)
            
        # Explanation
        st.write("""
        In OpenCV, black and white images are created by filling a matrix with pixel values:
        - **Black image**: When the pixel values are set to 0.
        - **White image**: When the pixel values are set to 255.
            """)     
        
        # Display the code
        st.code("""
        import numpy as np
        import streamlit as st
        
        white_img= np.full((500,500),255,dtype=np.uint8)
        black_img = np.zeros((500,500),dtype=np.uint8)        
        
        cv2.imshow("white",white_img)       #white image is displayed
        cv2.imshow("black",black_img)       #black image is displayed
        cv2.waitKey()                       # until we close the window it displays the image
        cv2.destroyAllWindows()             # Close all temporary windows
        """, language="python")

        st.markdown("<h5 style='color:black;'>Download Jupyter Notebook or PDF with Code Examples</h5>", unsafe_allow_html=True)
        notebook_url = "https://colab.research.google.com/drive/1ePttPUBbaq9DjGS0OuzLhe32KNPStaLR"
        st.write("Click below for Jupyter notebook:")
        st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})")
        
        # Section 1: Grayscale Image
        st.markdown("""
        <h3 style="color: #9400d3;">Creating a Grayscale Image</h3>
        """, unsafe_allow_html=True)

        st.write("""
        In a grayscale image, 0 is black, 255 is white, and pixel values between 1 and 254 represent varying shades of gray
        """)


        st.code("""
        # Grayscale image creation
        gray_img = np.full((500, 500), 155, dtype=np.uint8)   #155 is a medium-light gray, closer to white than black.
        
        # Display in OpenCV
        cv2.imshow("Gray Image", gray_img)    #Gray scale image is created
        cv2.waitKey(0)
        cv2.destroyAllWindows()
        """, language="python")

        st.markdown("""
        <h3 style="color: #9400d3;">Creating a BGR image</h3>
        """, unsafe_allow_html=True)

        st.write("""
        - The **Red channel** has pixel values with red set to 255, and green and blue to 0. 
        - The **Green channel** has pixel values with green set to 255, and red and blue to 0. 
        - The **Blue channel** has pixel values with blue set to 255, and red and green to 0. 
        - When merged, these channels form a complete color image.
        """)

        st.markdown("""
        <p style="color: #FF6347;">To represent a coloured image, we have to convert the image into a 3D array. The mixture of three 2D arrays is <strong style="color: #1E90FF;">RGB</strong>.</p>
        """, unsafe_allow_html=True)

        
        st.code("""
    
        # Create individual color channels
        b = np.full((200, 200), 255, dtype=np.uint8)  # Blue channel
        g = np.zeros((200, 200), dtype=np.uint8)     # Green channel
        r = np.zeros((200, 200), dtype=np.uint8)     # Red channel
    
        # Merge the color channels to create RGB images
        b_img = cv2.merge([b, g, r])  # Blue image
        g_img = cv2.merge([g, b, r])  # Green image
        r_img = cv2.merge([r, g, b])  # Red image
    
        # Display the images
        cv2.imshow("Blue", b_img)
        cv2.imshow("Green", g_img)
        cv2.imshow("Red", r_img)
        cv2.waitKey(0)               # Wait until a key is pressed
        cv2.destroyAllWindows()      # Close all OpenCV windows
        """, language="python")

        st.markdown("""
        <h3 style="color: #e25822;">Channel Splitting</h3>
        """, unsafe_allow_html=True)

        # About cv2.split() function
        st.write("""
        The `cv2.split()` function in OpenCV is used to separate an image into its individual color channels.  
        It generates separate single-channel arrays for each color, which can then be manipulated independently.  
        For example, it can divide an RGB image into its Red, Green, and Blue components.
        """)
        
        # Syntax for cv2.split() function
        st.code("""
            # Syntax for cv2.split()
            channels = cv2.split(image)
            # image: The input image (e.g., an RGB image).
            # channels: A list of single-channel images (e.g., Blue, Green, Red).
        """, language="python")
        
        # Heading for the section
        st.markdown("""
                <h3 style="color: #9400d3;">Splitting Channels </h3>
            """, unsafe_allow_html=True)
        
        # Code Example for Splitting and Merging Color Channels
        st.code("""
            img = cv2.imread("path of the image")   # Load the image
            
            b, g, r = cv2.split(img)  # Separate the image into Blue, Green, and Red channels
            
            zeros = np.zeros(img.shape[:-1], dtype=np.uint8)   # Create a blank array for the empty channels
            
            blue_channel = cv2.merge([b, zeros, zeros])    # The Blue channel has blue set to 255, and red and green to 0
            green_channel = cv2.merge([zeros, g, zeros])   # The Green channel has green set to 255, and red and blue to 0
            red_channel = cv2.merge([zeros, zeros, r])     # The Red channel has red set to 255, and green and blue to 0
            
            # Show the separate color channels and the original image
            cv2.imshow("Blue_channel", blue_channel)
            cv2.imshow("Green_channel", green_channel)
            cv2.imshow("Red_channel", red_channel)
            cv2.waitKey(0)
            cv2.destroyAllWindows()
        """, language="python")
        
        st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/BGR%20to%20Split.jpg")

        st.markdown("""
                <h3 style="color: #9400d3;">Combining Channels </h3>
            """, unsafe_allow_html=True)

        
        st.write("""
        To create a full color image from separate single-channel images (such as Red, Green, and Blue), the **cv2.merge()** function is used.  
        It combines individual color channels into a single, complete color image.
        """)

        
        # Code Example for Splitting and Merging Color Channels
        st.code("""
            img = cv2.imread("path of the image")   # Load the image
            
            b, g, r = cv2.split(img)  # Separate the image into Blue, Green, and Red channels
            
            zeros = np.zeros(img.shape[:-1], dtype=np.uint8)   # Create a blank array for the empty channels
            
            blue_channel = cv2.merge([b, zeros, zeros])    # The Blue channel has blue set to 255, and red and green to 0
            green_channel = cv2.merge([zeros, g, zeros])   # The Green channel has green set to 255, and red and blue to 0
            red_channel = cv2.merge([zeros, zeros, r])     # The Red channel has red set to 255, and green and blue to 0

            
            # Show the separate color channels and the original image
            cv2.imshow("Blue_channel", blue_channel)
            cv2.imshow("Green_channel", green_channel)
            cv2.imshow("Red_channel", red_channel)
            cv2.imshow("merged_image", cv2.merge([blue_channel, green_channel, red_channel]))
            cv2.waitKey(0)
            cv2.destroyAllWindows()
        """, language="python")



        st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/merging%20BGR.jpg")
        


        
        # Title of the app
        st.markdown("""
        <h3 style="color: #9400d3;">Converting colour spaces</h3>
        """, unsafe_allow_html=True)

        st.write("""
            When working with image arrays, we might need to convert or modify their color spaces.  
            OpenCV provides the `cv2.cvtColor()` method to achieve this. It allows us to change an image's color space to a desired format **BGR to Grayscale**.
            """)

        st.code("""
        # Convert from BGR to Grayscale
        
         img_gray = cv2.cvtColor(BGR_img, cv2.COLOR_BGR2GRAY)
        """)

        
        st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/BGR2Gray.jpg")

        
    
        if st.button("Back to Home"):
            st.session_state['page'] = "home"

# Unstructured Data - Video Page
def video_details_page():
           
        
        # Definition of Video
        st.markdown("<h3 style='text-align: left; color: #FF00FF;'>What is video?</h3>", unsafe_allow_html=True)

        
        st.write("""
        A video is essentially a series of images, called frames, played quickly one after another to create the illusion of motion.
        For example, a sequence of images like I1, I2, I3, ..., In transitions so rapidly that the individual frames aren't noticeable to our eyes.
        This rapid switching between frames creates the appearance of continuous motion.
        
        **The smoothness of a video depends on how many frames are shown per second, measured in frames per second (fps)**
        - **30 fps**: 30 frames are displayed every second, which gives decent smoothness.
        - **60 fps**: 60 frames are displayed every second, making the video smoother.
        """)

        st.markdown("<h3 style='text-align: left; color: #FF00FF;'>Understanding Video Processing with OpenCV</h3>", unsafe_allow_html=True)

        st.write("""
        **Load the Video**
        - Load Video: Use `cv2.VideoCapture()` with the video file path to load and open the video.

        **Read Frames**
        - Read Frames: OpenCV reads each video frame in a loop using the read() function until the video ends. 
        
        **Display Frames**
        - Frames are displayed sequentially with cv2.imshow(), simulating video playback.
        
        **Exit Playback**
        - Press a key (e.g., 'q') to stop playback and exit the loop.
        """)
        
        st.code("""
            # Reading the video
    
            vid = cv2.VideoCapture("Here give the path of the vedio")
            
            # Dividing the video into frames and looping each and very frame by suing while loop as we dont how many frames 
            
            while True:
                succ,img = vid.read()
                
                if succ == False:    # here if the frame doesnot exist break
                    break
                            
                cv2.imshow("Window name",img)  # display the video 
                 
                if cv2.waitKey(1)& 255 == ord("q"): # to interupt the vedio or to come out of video in the middle use ascii value
                    break
                    
            cv2.destroyAllWindows()   # removing all the tempory memory RAM
        """, language = "python")

        
        # Use st.markdown to display the explanation

        st.markdown("<h3 style='text-align: left; color: #FF00FF;'>Understanding vid.read()</h3>", unsafe_allow_html=True)


        st.markdown("""        
        - `vid.read()` is used to grab one frame (image) at a time from a video.
        - It gives back two things:
          1. **`succ`**: A `True` or `False` value.
             - **`True`** means the frame was successfully loaded.
             - **`False`** means the frame could not be loaded (usually because the video has ended).
          2. **`img`**: The actual frame (image) from the video, which is in the form of a NumPy array. This image can then be processed just like any regular picture.
        """)

        st.markdown("<h3 style='text-align: left; color: #FF00FF;'>Understanding cv2.waitkey()</h3>", unsafe_allow_html=True)

        st.markdown("""

        - **`cv2.waitKey(1)`**:
          - This function waits for a key to be pressed for 1 millisecond.
          - If a key is pressed, it returns the code of that key. If no key is pressed, it returns `-1`.
        
        - **`& 255`**:
          - This part ensures the key code is correctly interpreted across different systems.
          - It keeps only the last 8 bits of the code (the actual key code).
        
        - **`ord('q')`**:
          - This gets the ASCII value of the letter `'q'`.
          - The ASCII value for `'q'` is 113.
          - This is used to check if the user pressed the `'q'` key to stop the program.
        
        """)

        st.code("""
        if cv2.waitKey(1)& 255 == ord("q"):
            break
        """,language="python")


        st.markdown("<h5 style='color:black;'>Download Jupyter Notebook or PDF with Code Examples</h5>", unsafe_allow_html=True)
        notebook_url = "https://colab.research.google.com/drive/1JD2AbzrHaDEg2BMFHeNdFCPbHk3Nb1pW"
        st.write("Click below for Jupyter notebook:")
        st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})")

        st.markdown("<h3 style='text-align: left; color: #FF00FF;'>Converting BGR Video to Grayscale</h3>", unsafe_allow_html=True)

        

        # Use st.markdown to display the explanation
        st.markdown("""        
        You can process video frames one by one and convert them as needed. In this example, we will:
        
        - Convert each frame of a video from BGR (Blue, Green, Red) color format to grayscale (a black-and-white image).
        - Display both the original video frames and the grayscale frames side by side.
        """)


        # Use st.code to display the OpenCV code
        st.code("""
        import cv2
        
        # Load the video
        vid = cv2.VideoCapture("path of the video")
        
        while True:
            succ, img = vid.read()  # Reading the video
        
            # Dividing the video into frames and looping through each frame as we don't know how many frames
            if succ == False:  # If the frame does not exist, break
                break
        
            img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # Converting BGR image to Grayscale
        
            cv2.imshow("video_color", img)  # Display the original video
        
            cv2.imshow("video_gray", img1)  # Display the grayscale video
        
            if cv2.waitKey(1) & 255 == ord("q"):  # To interrupt the video or stop in the middle using ASCII value
                break
        
        cv2.destroyAllWindows()  # Removing all the temporary memory (RAM)
        """, language="python")

        st.markdown("<h3 style='text-align: left; color: #FF00FF;'>Splitting video into 3 Different channels (B,G,R)</h3>", unsafe_allow_html=True)
    


        # Use st.markdown to display the explanation
        st.markdown("""        
        Each frame of a colored video consists of three channels: Blue, Green, and Red (BGR). In this example, we will:
        
        - Split each frame of the video into separate Blue, Green, and Red color channels.
        - Display the original video alongside each individual color channel.
        """)
        
        # Use st.code to display the OpenCV code
        st.code("""
        import cv2
        import numpy as np
        
        # Load the video
        vid = cv2.VideoCapture("path of the video")
        
        while True:
            succ, img = vid.read()
            
            if succ == False:
                break
            
            # Split the image into Blue, Green, and Red channels
            b, g, r = cv2.split(img)
            z = np.zeros(b.shape, dtype=np.uint8)  # Create a blank channel
            
            # Convert the image to grayscale
            img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
                
            # Display the individual color channels
            cv2.imshow("bluechannel", cv2.merge([b, z, z]))
            cv2.imshow("green_channel", cv2.merge([z, g, z]))
            cv2.imshow("red_channel", cv2.merge([z, z, r]))
            
            # Display the grayscale video
            cv2.imshow("video_gray", img1)
            
            if cv2.waitKey(100) & 255 == ord("q"):
                break
                
        cv2.destroyAllWindows()  # Remove temporary windows
        """, language="python")
             
        st.markdown("<h3 style='text-align: left; color: #ffa500;'>Live Streaming with Webcam</h3>", unsafe_allow_html=True)

        st.markdown("<h5 style='color:black;'>Download Jupyter Notebook or PDF with Code Examples</h5>", unsafe_allow_html=True)
        notebook_url = "https://colab.research.google.com/drive/1bbw_pOPjiCXghTnfZCnPmNz9znn9Utgp"
        st.write("Click below for Jupyter notebook:")
        st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})")

    

        # Display the explanation in markdown
        st.markdown("""
        
        OpenCV allows you to use your webcam for live video streaming. The `cv2.VideoCapture()` function is used to activate the webcam. Here's how it works:
        
        - `cv2.VideoCapture(0)`: The `0` tells OpenCV to use the default webcam on your computer. If you have multiple cameras, you can use other numbers (like 1, 2) to access those cameras.
        - This function establishes a connection with the webcam and begins capturing video frames in real time.
        
        The following example demonstrates how to:
        - Activate the webcam.
        - Display the live stream.
        - Close the webcam window by pressing the 'p' key.
        """)
        
        # Display the OpenCV code
        st.code("""
        import cv2
        
        # Capture video from the default webcam (ID = 0)
        vid = cv2.VideoCapture(0)
        
        while True:
            suc, img = vid.read()
        
            if suc == False:
                print("Web Camera is not working")
                break
        
            cv2.imshow("live stream", img)
        
            # Exit the loop when 'p' key is pressed
            if cv2.waitKey(1) & 255 == ord('p'):
                break
        
        cv2.destroyAllWindows()
        """, language="python")


        st.markdown("<h3 style='text-align: left; color: #ffa500;'>Dual Webcam Stream Color vs Grayscale Capture</h3>", unsafe_allow_html=True)

        st.markdown("""
        - 1. The first webcam displays the original video feed from the camera.
        - 2. The second webcam shows the same video feed, but converted to grayscale, where the color information is removed, leaving only varying shades of gray.
        """)

        st.code("""
        vid = cv2.VideoCapture(0) # default id = 0


        while True:
            suc,img=vid.read()
            
            if suc == False:
                print("Web Camera is not working")
                break
                
            img1 = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
                
            cv2.imshow("live stream",img)              # orginal stream
            cv2.imshow("Grayscale live stream",img1)   # Gray Scale stream
            
            if cv2.waitKey(1) & (255) == ord("q"):
                break 
                
        cv2.destroyAllWindows()
                """,language = "python")


        st.markdown("<h3 style='text-align: left; color: #ffa500;'>Webcam Stream with RGB Channel Separation</h3>", unsafe_allow_html=True)


        st.markdown("""
        - The image captured by the webcam is divided into three parts: Red, Green, and Blue. This is done using `cv2.split()`
        - The separate Red, Green, and Blue images are then combined back into three full-color images using `cv2.merge()`.
        - This lets us see each color channel on its own, but in full color.
        """)

        st.code("""
        vid = cv2.VideoCapture(0) # default id = 0


        while True:
            suc,img=vid.read()
            
            if suc == False:
                print("Web Camera is not working")
                break
                
            b,g,r=cv2.split(img)
            z = np.zeros(b.shape,dtype=np.uint8)
        
                
            cv2.imshow("live stream",img)
            cv2.imshow("livestream1",cv2.merge([b,z,z]))   # Blue channel
            cv2.imshow("livestream2",cv2.merge([z,g,z]))   # Green channel
            cv2.imshow("livestream3",cv2.merge([z,z,r]))   # Red channel
        
        
            
            if cv2.waitKey(1) & (255) == ord("q"):
                break 
                
        cv2.destroyAllWindows()
        
        """,language="python")

        st.markdown("<h3 style='text-align: left; color: #ffa500;'>Webcam Frame Capture and Save</h3>", unsafe_allow_html=True)



        st.markdown("""
        - **Activate Webcam**: The webcam is activated automatically when the application starts.
        - **Capture Frames**: Press the 's' key to capture and save the current frame to the 'captured_frames' folder.
        - **Stop Webcam Feed**: Press the 'p' key to stop the webcam and close the application.
        """)


        st.code("""
        vid = cv2.VideoCapture(0) # default id = 0
        c=0
        
        while True:
            suc,img=vid.read()
            
            if suc == False:
                print("Web Camera is not working")
                break
                
            cv2.imshow("video",img)
            
            if cv2.waitKey(1)& (255) == ord("s"):
                cv2.imwrite("Path to save".format(c),img)  #path to save the images
                print("image have been captured")
                c+=1
                
            if cv2.waitKey(1)& (255) == ord("q"):
                break
                
        
        cv2.destroyAllWindows()        
        """,language = "python")

        st.markdown("<h5 style='color:black;'>Download Jupyter Notebook or PDF with Code Examples</h5>", unsafe_allow_html=True)
        notebook_url = "https://colab.research.google.com/drive/1bbw_pOPjiCXghTnfZCnPmNz9znn9Utgp"
        st.write("Click below for Jupyter notebook:")
        st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})")

# Open Cv Project

        if st.button("opencv_projects"):
            st.session_state['page'] = "OpenCV Projects"

def opencv_projects_page():
    
        st.title("OpenCV Projects")

        st.markdown("""
        <h2 style="color: #BB3385;">OpenCV Projects</h2>
        """, unsafe_allow_html=True)

    

        # Project 1: Converting an Image into Tabular Data
        st.markdown("""
            <h3 style="color: #5b2c6f;">Converting an Image into Tabular Data</h3>
            <p>
                This project explains how to convert an image into tabular data by extracting pixel values 
                and representing them as structured rows and columns for analysis or machine learning tasks.
            </p>
        """, unsafe_allow_html=True)
    
        
        st.markdown("""
            <a href="https://github.com/hari3485/Open-Cv-Animation-project/blob/main/Extract%20Images%20to%20Tabular%20Data.ipynb" 
               target="_blank" style="color: #2a52be;">
                Check out the project on GitHub
            </a>
        """, unsafe_allow_html=True)
    
        
        # Project 2: Converting a Video into Tabular Data
        st.markdown("""
            <h3 style="color: #5b2c6f;">Converting a Video into Tabular Data</h3>
            <p>
                Learn to process videos frame by frame and extract pixel data from each frame. 
                This project demonstrates how to represent video data in a structured tabular format.
            </p>
        """, unsafe_allow_html=True)
    
        
        st.markdown("""
            <a href="https://github.com/hari3485/Open-Cv-Animation-project/blob/main/Extract%20Videos%20to%20Tabular%20Data.ipynb" 
               target="_blank" style="color: #2a52be;">
                Check out the project on GitHub
            </a>
        """, unsafe_allow_html=True)
    
    
        
        # Project 3: Animation Project
        st.markdown("""
            <h3 style="color: #5b2c6f;">A Tale of Integrity: Finding Money, Choosing Honesty</h3>
            <p>
                This animation tells the story of a young boy who finds a bundle of money. Torn between keeping it or doing the right thing, 
                he remembers his grandfather’s words: <em>"True character shines through in moments of choice."</em> 
                He chooses integrity and returns the money to its rightful owner, reminding us all that honesty is priceless.
            </p>
        """, unsafe_allow_html=True)


        
        st.markdown("""
            <a href="https://github.com/hari3485/Open-Cv-Animation-project/blob/main/Animation%20Project.ipynb" 
               target="_blank" style="color: #2a52be;">
                Check out the animation on GitHub
            </a>
        """, unsafe_allow_html=True)
    
        st.video("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/full_frame_video.mp4")
        
        # Project 4: GIF Project
        st.markdown("""
            <h3 style="color: #5b2c6f;">The Coding Journey: Debugging Woes Turned Joy (GIF)</h3>
            <p>
                This humorous and relatable GIF portrays every coder’s struggle: A boy sits at his desk exclaiming, 
                <em>"My code is not working; I don’t know what to do!"</em> Moments later, he joyfully discovers, 
                <em>"It’s working perfectly!"</em> – capturing the emotional highs and lows of debugging.
            </p>
        """, unsafe_allow_html=True)
    
    
        
        st.markdown("""
            <a href="https://github.com/hari3485/Open-Cv-Animation-project/blob/main/Giffy.ipynb" 
               target="_blank" style="color: #2a52be;">
                Check out the GIF on GitHub
            </a>
        """, unsafe_allow_html=True)
    

        st.video("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/giphy_animation.mp4")

        if st.button("Image_Augmentation"):
            st.session_state['page'] = "Image_Augmentation"

def Image_Augmentation_page():

        st.title("Image Augmentation")
        # Heading
        st.markdown("""
            <h3 style="color: #9400d3;">What is Image Augmentation?</h3>
        """, unsafe_allow_html=True)
        
        # Definition
        st.write("""
        Image augmentation is a method used to enhance the size and variety of an image dataset by applying transformations to existing images. 
        These transformations introduce variations while preserving the core features of the image, making it useful for training machine learning models to handle diverse inputs. 
        
        *How It Works*
        Image augmentation applies transformations like resizing, rotation, flipping, and more to the original image. These changes simulate real-world variations, ensuring that machine learning models can identify patterns even with differences in perspective, scale, or lighting conditions.
        
        The key idea is to preserve the original features of the image while introducing diversity. For example, if we take an image and apply five different transformations, we generate five new variations of that image. This provides the model with more data to learn from, improving its performance and ability to generalize.
        """)
    
        # Types of Image Augmentation
        
        st.markdown("""
            <h3 style="color: #9400d3;">Types of Image Augmentation</h3>
        """, unsafe_allow_html=True)
        
        st.write("""
        Image augmentation is broadly categorized into two types:
        
        1. *Affine Transformations*
        2. *Non-Affine Transformations*
        """)
    
        # Affine Transformations
        
        st.markdown("""
            <h3 style="color: #9400d3;">Affine Transformations</h3>
        """, unsafe_allow_html=True)
        
        st.write("""
        *Affine Transformations* are transformations where:
        
        1. The transformed image and the original image maintain *parallelism between lines*.
        2. In some cases, the *angle between lines* and the *length of the lines* may also be preserved.
        
        These transformations ensure that the geometric relationships within the image remain intact, even as the image is resized, rotated, or shifted.
        
        Affine transformations are performed using a mathematical operation known as an *Affine Matrix*, which maps the original image coordinates to new coordinates.
        """)
    
        st.markdown("""
            <h3 style="color: #e25822;">Common Affine Transformations:</h3>
        """, unsafe_allow_html=True)
        
        st.write("""
        1. *Scaling*: Changing the size of the image while maintaining its proportions.
        2. *Translation*: Shifting the image horizontally, vertically, or both.
        3. *Rotation*: Rotating the image around a specified center point.
        4. *Shearing*: Slanting the image along the x or y axis, creating a skewed effect.
        5. *Cropping*: Extracting a specific portion of the image, usually to focus on a region of interest.
        
        These transformations are linear, meaning the relationships between points in the image remain consistent.
        """)
    
        st.image(
            "https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/Image-Augmentation.jpg",
            use_container_width=True)
    
        # Explanation for Translation
        st.markdown("""
            <h3 style="color: #9400d3;">Translation</h3>
        """, unsafe_allow_html=True)
        
        st.write("""
        *Translation* involves moving an image from one location to another along the x-axis, y-axis, or both. It adjusts the position of the image on the canvas without modifying its original content.
        
        The transformation is performed using a translation matrix:
        """)
    
        st.write("""
        The translation matrix is represented as:
        [[1, 0, tx], [0, 1, ty]]
            
        Here:
        - *tx*: Specifies the shift along the x-axis (horizontal axis).
        - *ty*: Specifies the shift along the y-axis (vertical axis).
        
        """)
    
        st.code("""
        # Load the image
        img = cv2.imread('path_to_image.jpg')
        
        # Define translation parameters
        tx = 100  # Shift 100 pixels along the x-axis
        ty = 50   # Shift 50 pixels along the y-axis
        
        # Create the translation matrix
        translation_matrix = np.array([[1, 0, tx], [0, 1, ty]], dtype=np.float32)
        
        # Apply translation
        translated_img = cv2.warpAffine(img, translation_matrix, (300, 300))
        
        # Display the images
        cv2.imshow("Original Image", img)
        cv2.imshow("Translated Image", translated_img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
        """, language="python")
    
        # Explanation for Rotation
        st.markdown("""
            <h3 style="color: #9400d3;">Rotation</h3>
        """, unsafe_allow_html=True)
        
        st.write("""
        *Rotation* involves rotating an image around a specified center point by a given angle. It changes the orientation of the image while preserving its content.
        
        The rotation is performed using a rotation matrix:
        [[cos(θ), -sin(θ), tx], [sin(θ), cos(θ), ty]]
        Here:
        - *θ (theta)*: Specifies the rotation angle in degrees.
        - *tx, ty*: Specifies the adjustments to reposition the rotated image.
        - *Scale*: A factor that can resize the image during rotation.
        """)
        
        # Code Example
        st.code("""
        # Load the image
        img = cv2.imread('path_to_image.jpg')
        
        # Define the rotation matrix
        r_m = cv2.getRotationMatrix2D((1347, 900), 50, 1)  # Center at (1347, 900), Rotate by 50 degrees, Scale = 1
        
        # Apply rotation
        r_img = cv2.warpAffine(img, r_m, (580, 500), borderMode=cv2.BORDER_DEFAULT)
        
        # Display the images
        cv2.imshow("Original Image", img)
        cv2.imshow("Rotated Image", r_img)
        
        cv2.waitKey(0)
        cv2.destroyAllWindows()
        """, language="python")
        
        # Explanation for Direct Rotation
        st.markdown("""
            <h3 style="color: #9400d3;">Direct Rotation Using cv2.rotate</h3>
        """, unsafe_allow_html=True)
        
        st.write("""
        OpenCV provides a direct method for rotating images with predefined angles: cv2.rotate. 
        This method simplifies rotation operations for 90°, 180°, and 270° (clockwise or counterclockwise) without requiring a custom rotation matrix.
        
        - **cv2.ROTATE_180**: Rotates the image by 180°.
        - **cv2.ROTATE_90_CLOCKWISE**: Rotates the image by 90° clockwise.
        - **cv2.ROTATE_90_COUNTERCLOCKWISE**: Rotates the image by 90° counterclockwise.
        """)
        
        # Code Example
        st.code("""
        # Rotate the image using predefined rotation modes
        img1 = cv2.rotate(img, cv2.ROTATE_180)  # Rotate 180 degrees
        img2 = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)  # Rotate 90 degrees clockwise
        img3 = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE)  # Rotate 90 degrees counterclockwise
        
        # Display the images
        cv2.imshow("Original Image", img)
        cv2.imshow("Rotated 180°", img1)
        cv2.imshow("Rotated 90° Clockwise", img2)
        cv2.imshow("Rotated 90° Counterclockwise", img3)
        
        cv2.waitKey(0)
        cv2.destroyAllWindows()
        """, language="python")
    
        # Explanation for Shearing
        st.markdown("""
            <h3 style="color: #9400d3;">Shearing</h3>
        """, unsafe_allow_html=True)
        
        st.write("""
        *Shearing* is a transformation that slants the shape of an image along the x-axis, y-axis, or both. It skews the content of the image, creating a shifted or stretched effect.
        
        The transformation is performed using a shearing matrix:
        """)
        
        st.write("""
        The shearing matrix is represented as:
        
        For x-axis shear:
        [[1, shx, 0], [0, 1, 0]]
        
        For y-axis shear:
        [[1, 0, 0], [shy, 1, 0]]
        
        Here:
        - *shx*: Shear factor along the x-axis.
        - *shy*: Shear factor along the y-axis.
        """)
    
        st.code("""
        # Load the image
        img = cv2.imread('path_to_image.jpg')
        
        # Define shearing parameters
        shx = 1  # Shear factor along the x-axis
        shy = 3  # Shear factor along the y-axis
        tx = 0   # Translation along the x-axis
        ty = 0   # Translation along the y-axis
        
        # Create the shearing matrix
        shearing_matrix = np.array([[1, shx, tx], [shy, 1, ty]], dtype=np.float32)
        
        # Apply the shearing transformation
        sheared_img = cv2.warpAffine(img, shearing_matrix, (300, 300))
        
        # Display the original and sheared images
        cv2.imshow("Original Image", img)
        cv2.imshow("Sheared Image", sheared_img)
        
        cv2.waitKey(0)
        cv2.destroyAllWindows()
        """, language="python")
    
    
        # Explanation for Scaling
        st.markdown("""
            <h3 style="color: #9400d3;">Scaling</h3>
        """, unsafe_allow_html=True)
        
        st.write("""
        *Scaling* is a transformation that changes the size of an image. It can be used to enlarge or shrink the image while maintaining its original proportions or altering them.
        
        Scaling is performed using a scaling matrix:
        """)
        
        st.write("""
        The scaling matrix is represented as:
        [[sx, 0, 0], [0, sy, 0]]
        Here:
        - *sx*: Scaling factor along the x-axis.
        - *sy*: Scaling factor along the y-axis.
        - If sx and sy are greater than 1, the image is enlarged.
        - If sx and sy are less than 1, the image is shrunk.
        """)
    
        st.code("""
        # Load the image
        img = cv2.imread('path_to_image.jpg')
        
        # Define scaling and translation parameters
        sx, sy = 2, 1  # Scale by 2 along the x-axis and 1 along the y-axis
        tx, ty = 0, 0  # No translation
        
        # Create the scaling matrix
        scaling_matrix = np.array([[sx, 0, tx], [0, sy, ty]], dtype=np.float32)
        
        # Apply scaling
        scaled_img = cv2.warpAffine(img, scaling_matrix, (2 * 300, 300))
        
        # Display the images
        cv2.imshow("Original Image", img)
        cv2.imshow("Scaled Image", scaled_img)
        
        cv2.waitKey(0)
        cv2.destroyAllWindows()
        """, language="python")
    
    
        # Explanation for Cropping
        st.markdown("""
            <h3 style="color: #9400d3;">Cropping</h3>
        """, unsafe_allow_html=True)
        
        st.write("""
        *Cropping* is a transformation that extracts a specific portion of an image, usually to focus on a region of interest. 
        It is achieved by selecting a rectangular region of the image using pixel coordinates.
        
        The process involves defining the coordinates for:
        - *Top-left corner (x1, y1)*: Starting point of the crop.
        - *Bottom-right corner (x2, y2)*: Ending point of the crop.
        """)
        
        st.code("""
        # Load the image
        img = cv2.imread('path_to_image.jpg')
        
        # Define crop coordinates
        x1, y1 = 50, 50  # Top-left corner
        x2, y2 = 200, 200  # Bottom-right corner
        
        # Crop the image
        cropped_img = img[y1:y2, x1:x2]
        
        # Display the images
        cv2.imshow("Original Image", img)
        cv2.imshow("Cropped Image", cropped_img)
        
        cv2.waitKey(0)
        cv2.destroyAllWindows()
        """, language="python")



        # Function to apply affine transformations
        def apply_affine_transformation(image, transformation_type):
            transformed_images = []
            rows, cols, _ = image.shape
        
            for i in range(1, 11):  # Generate 10 variations
                if transformation_type == "Rotation":
                    angle = i * 10
                    M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1)
                elif transformation_type == "Scaling":
                    scale = 1 + (i * 0.05)  # Reduced scale increments
                    M = np.float32([[scale, 0, 0], [0, scale, 0]])
                elif transformation_type == "Translation":
                    tx, ty = i * 5, i * 5  # Reduced translation
                    M = np.float32([[1, 0, tx], [0, 1, ty]])
                elif transformation_type == "Shearing":
                    shear = 0.05 * i  # Reduced shear factor
                    M = np.float32([[1, shear, 0], [shear, 1, 0]])
                elif transformation_type == "Cropping":
                    # Simple cropping: reduce the size incrementally
                    x1, y1 = i * 5, i * 5
                    x2, y2 = cols - i * 5, rows - i * 5
                    if x1 < x2 and y1 < y2:  # Ensure cropping dimensions are valid
                        transformed_image = image[y1:y2, x1:x2]
                        transformed_images.append(transformed_image)
                    continue  # Skip warpAffine for cropping
                else:
                    st.error("Invalid transformation type!")
                    return []
        
                transformed_image = cv2.warpAffine(image, M, (cols, rows))
                transformed_images.append(transformed_image)
        
            return transformed_images
        
        # Streamlit App
        st.title("Dynamic Affine Transformation Tool")
        st.write("Select a transformation type to proceed and learn how it works before uploading an image.")
        
        # Transformation Options
        transformation = st.selectbox(
            "Step 1: Select a transformation type:",
            ["Select a Transformation", "Rotation", "Scaling", "Translation", "Shearing", "Cropping"]
        )
        
        # Ensure the user selects a valid transformation
        if transformation != "Select a Transformation":
            # Provide guidance based on the selected transformation
            if transformation == "Rotation":
                st.info("Rotation rotates the image around a fixed point. Angles are applied in steps of 10 degrees.")
            elif transformation == "Scaling":
                st.info("Scaling adjusts the size of the image. The scale factor increases incrementally.")
            elif transformation == "Translation":
                st.info("Translation shifts the image horizontally and vertically in small steps.")
            elif transformation == "Shearing":
                st.info("Shearing skews the image along the x-axis or y-axis, creating a slanted effect.")
            elif transformation == "Cropping":
                st.info("Cropping trims the image edges step by step to focus on a smaller region.")
        
            # Image Uploader (Only appears after selection)
            uploaded_file = st.file_uploader("Step 2: Now, upload an image", type=["jpg", "jpeg", "png"])
        
            if uploaded_file:
                # Read the uploaded file into a numpy array using OpenCV
                file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
                image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
        
                # Display the uploaded image
                st.image(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), caption="Uploaded Image", use_container_width=True)
        
                # Automatically apply the transformation after upload
                transformed_images = apply_affine_transformation(image, transformation)
        
                if transformed_images:
                    st.write(f"Generated {len(transformed_images)} images using {transformation}:")
        
                    # Display all transformed images
                    for i, img in enumerate(transformed_images):
                        st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), caption=f"{transformation} {i+1}", use_container_width=True)
        
                    # Create ZIP file for download
                    zip_buffer = io.BytesIO()
                    with zipfile.ZipFile(zip_buffer, "w") as zip_file:
                        for i, img in enumerate(transformed_images):
                            # Save each image as bytes
                            _, img_encoded = cv2.imencode('.jpg', img)
                            zip_file.writestr(f"{transformation}image{i+1}.jpg", img_encoded.tobytes())
        
                    zip_buffer.seek(0)
                    st.download_button(
                        label=f"Download All {transformation} Images",
                        data=zip_buffer,
                        file_name=f"{transformation}_transformed_images.zip",
                        mime="application/zip"
                    )
                else:
                    st.warning("No transformed images generated. Please check your transformation type.")
            else:
                st.warning("Please upload an image to proceed.")
        else:
            st.warning("Please select a valid transformation type to proceed.")
            
        if st.button("Back to Home"):
            st.session_state['page'] = "home"

# Main Page

def main_page():


    # Title and Introduction
    st.title("📊 What is Data?")
    st.write("Data is information we collect to understand or learn something. It can be numbers, words, pictures, or even videos. For example, counting the number of students in a class gives us data.")
    
    # Types of Data
    st.header("📂 Types of Data")
    st.write("Data is divided into three types based on how it is organized: **Structured Data**, **Semi-Structured Data**, and **Unstructured Data**.")
    
    data_type = st.radio("Select Data Type:", ["Structured", "Semi-Structured", "Unstructured"])

    if data_type == "Structured":
        # Structured Data
        st.subheader("1️⃣ Structured Data 🗂️")
        st.write("""
        This type of data is well-organized, like in a table with rows and columns. It's easy to store and analyze.
        - **Examples:**
          - Names, phone numbers, and addresses in a spreadsheet.
          - Sales records in a database.
            """)
        st.write("**💡 Simple Story:** Think of a grocery store where every item has its price, category, and stock neatly listed on a computer.")
        names = ["Hari", "Harika", "Varshi", "Shamitha"]
        cities = ["Hyderabad", "Bangalore", "Chennai", "Mumbai"]
        marks = [90, 87, 98, 94]
        
        # Create the DataFrame
        data = {
            "Name": names,
            "City": cities,
            "Marks": marks
        }
        df = pd.DataFrame(data)
        
        st.subheader("Details of Students")
        st.table(df)
    
        if st.button("Excel"):
            st.session_state['page'] = "excel"

    elif data_type == "Semi-Structured":
     # Semi-Structured Data
        st.subheader("2️⃣ Semi-Structured Data 📜")
        st.write("""
        This type of data is somewhat organized but not as strict as tables. It has a format but doesn’t fit perfectly into rows and columns.
        - **Examples:**
          - Emails (with subject, sender, and message).
          - JSON or XML files used in apps and websites.
        """)
        st.write("**💡 Simple Story:** Imagine writing a letter that has a date, sender’s name, and the main message. It’s structured in parts but not as fixed as a table.")
        st.markdown("""
        Unlike structured data, **semi-structured data** does not require a fixed schema. 
        However, it often includes tags or markers to separate elements. This means that the data can be organized in a flexible way, allowing you to add new data elements without disturbing the existing ones.
        """)
        
        # Display explanation for Self-Descriptive Tags
        st.subheader("Self-Descriptive Tags:")
        st.markdown("""
        Semi-structured data uses **tags** or **keys** to identify and describe the data. For example, in **JSON** and **XML**, the tags or keys help to organize and label the data, making it easier to understand.
        """)                
        st.write("Semi-Structured Data includes formats like CSV, JSON, XML, and HTML.")

        # JSON Data
        json_data = {
            "Name": "Hari",
            "City": "Hyderabad",
            "Marks": 90
        }
        
        # XML Data as a string
        xml_data = """
        <student>
          <name>Hari</name>
          <city>Hyderabad</city>
          <marks>90</marks>
        </student>
        """
        html_data = """
        <html>
        <head><title>Student Info</title></head>
        <body>
        <h1>Details of Students</h1>
        <table border="1">
        <tr><th>Name</th><th>City</th><th>Marks</th></tr>
        <tr><td>Hari</td><td>Hyderabad</td><td>90</td></tr>
        <tr><td>Harika</td><td>Bangalore</td><td>87</td></tr>
        <tr><td>Varshi</td><td>Chennai</td><td>98</td></tr>
        <tr><td>Shamitha</td><td>Mumbai</td><td>94</td></tr>
        </table>
        </body>
        </html>
        """

        # Display JSON
        st.subheader("JSON Data:")
        st.json(json_data)
        
        # Display XML
        st.subheader("XML Data:")
        st.code(xml_data, language='xml')

        st.title("Student Data Table HTML Format")

        st.code("""
        <table>
        <tr><th>Name</th><th>City</th><th>Marks</th></tr>
        <tr><td>John</td><td>New York</td><td>95</td></tr>
        <tr><td>Alice</td><td>Los Angeles</td><td>88</td></tr>
        <tr><td>Bob</td><td>Chicago</td><td>92</td></tr>
        <tr><td>Eve</td><td>San Francisco</td><td>90</td></tr>
        </table>
        """,language = "python")



        # Display the table using markdown
        st.markdown(html_data, unsafe_allow_html=True)

         
        if st.button("CSV"):
            st.session_state['page'] = "csv"
        if st.button("JSON"):
            st.session_state['page'] = "json"
        if st.button("XML"):
            st.session_state['page'] = "xml"
        if st.button("HTML"):
            st.session_state['page'] = "html"

    elif data_type == "Unstructured":

     # Unstructured Data
        st.subheader("3️⃣ Unstructured Data 📷")
        st.write("""
        This is data without any specific organization. It’s harder to analyze directly.
        - **Examples:**
          - Photos and videos.
          - Social media posts or text messages.
        """)
        st.write("**💡 Simple Story:** Think of a messy drawer with random papers, photos, and tools. It’s useful, but you need to sort it out to find what you need.")
    

        st.write("Unstructured Data includes formats like Images and Videos.")

        
        # Image Definition
        st.subheader("What is an Image?")
        st.markdown("""
        An image is a visual representation, such as a photo or picture, made up of pixels. It captures information visually and can be in various formats like JPEG, PNG, or HEIC.
        """)
        
        # Image Formats
        st.subheader("Image Formats:")
        st.markdown("""
        1. **JPEG (.jpg)**: Common for photos; uses lossy compression to reduce file size but loses some quality.  
        2. **JPEG 2000 (.jp2)**: Improved version of JPEG with better compression and quality, but not widely supported.  
        3. **HEIC (.heic)**: High-efficiency format, used on iPhones; offers better compression than JPEG without losing quality.  
        4. **PNG (.png)**: Lossless compression; supports transparency, ideal for images like logos or icons.
        """)
        
        # Video Definition
        st.subheader("What is a Video?")
        st.markdown("""
        A video is a sequence of moving images, often with sound, that creates the illusion of motion. It is used for entertainment, information, and communication, commonly in formats like MP4.
        """)
        
        # Video Format
        st.subheader("Video Format:")
        st.markdown("""
        1. **MP4 (.mp4)**: Widely used for videos; supports good quality and small file size. It’s compatible with most devices and platforms.
        """)
        
        if st.button("Image"):
            st.session_state['page'] = "image"
        if st.button("Video"):
            st.session_state['page'] = "video"


   
# Initialize session state
if 'page' not in st.session_state:
    st.session_state['page'] = "home"

# Route to appropriate page
if st.session_state['page'] == "home":
    main_page()
elif st.session_state['page'] == "excel":
    excel_details_page()
elif st.session_state['page'] == "csv":
    csv_details_page()
elif st.session_state['page'] == "json":
    json_details_page()
elif st.session_state['page'] == "xml":
    xml_details_page()
elif st.session_state['page'] == "html":
    html_details_page()
elif st.session_state['page'] == "image":
    image_details_page()
elif st.session_state['page'] == "video":
    video_details_page()
elif st.session_state['page'] == "OpenCV Projects":
    opencv_projects_page()
elif st.session_state['page'] == "Image_Augmentation":
    Image_Augmentation_page()