import streamlit as st import pandas as pd import matplotlib.pyplot as plt import cv2 import io import zipfile import numpy as np # Define functions for individual pages # Structured Data - Excel Page def excel_details_page(): st.title("Structured Data - Excel Details") st.markdown("

1. Handling Excel Files (.xlsx)

", unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) st.markdown("

2. Reading Excel Files (.xlsx)

", unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) st.code('df = pd.read_excel("path", sheet_name=[0, 1, 2])', language="python") st.markdown(""" """, unsafe_allow_html=True) st.code('df_first_sheet = df[0] # First sheet\n' 'df_second_sheet = df[1] # Second sheet\n' 'df_third_sheet = df[2] # Third sheet', language="python") st.markdown("

3. Converting Data to Excel Files (.xlsx)

", unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) st.code('df[0].to_excel("path")', language="python") st.markdown(""" """, unsafe_allow_html=True) st.code("""with pd.ExcelWriter("path") as writer: df[0].to_excel(writer, sheet_name="Sheet1") df[1].to_excel(writer, sheet_name="Sheet2")""", language="python") st.markdown("
Download Jupyter Notebook or PDF with Code Examples
", unsafe_allow_html=True) notebook_url = "https://colab.research.google.com/drive/1gkwpP7dFNXwQ7EgmXw-Mh9ifENAMVg8I" st.write("Click below for Jupyter notebook:") st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})") if st.button("Back to Home"): st.session_state['page'] = "home" # Semi-Structured Data - CSV Page def csv_details_page(): # Display the content about semi-structured data st.header("1. What is Semi-Structured Data?") st.markdown(""" """, unsafe_allow_html=True) st.header("2. Working with CSV Files") st.subheader("a) Reading a CSV File") st.markdown(""" """, unsafe_allow_html=True) # Code example for reading CSV st.code(""" import pandas as pd df = pd.read_csv("file.csv") print(df.head()) """, language="python") st.subheader("b) Handling Parse Errors") st.markdown(""" """, unsafe_allow_html=True) st.markdown("""

Solution: Use the on_bad_lines parameter in pandas:

""", unsafe_allow_html=True) # Code example for handling parse errors st.code(""" # Skip bad lines df = pd.read_csv("file.csv", on_bad_lines="skip") # Warn about bad lines df = pd.read_csv("file.csv", on_bad_lines="warn") """, language="python") st.subheader("c) Unicode Decode Error") st.markdown(""" """, unsafe_allow_html=True) # Code example for trying multiple encodings st.code(""" import encodings # Get all encodings encodings_list = list(encodings.aliases.aliases.keys()) # Try reading the file with different encodings for encoding in encodings_list: try: df = pd.read_csv("file.csv", encoding=encoding) print(f"Success with encoding: {encoding}") break except: pass # Skip to the next encoding """, language="python") st.subheader("Lookup Error:") st.markdown(""" """, unsafe_allow_html=True) st.code(''' except LookupError: print("Incorrect Encoding".format(y)) ''') st.markdown(""" """, unsafe_allow_html=True) st.subheader("d) Handling Large CSV Files") st.markdown(""" """, unsafe_allow_html=True) # Code example for handling large files st.code(""" chunk_size = 100 chunks = pd.read_csv("large_file.csv", chunksize=chunk_size) for i, chunk in enumerate(chunks): print(f"Processing chunk {i + 1} with {chunk.shape[0]} rows") """, language="python") st.header("3. Summary") st.markdown(""" """, unsafe_allow_html=True) st.markdown("
Download Jupyter Notebook or PDF with Code Examples
", unsafe_allow_html=True) notebook_url = "https://colab.research.google.com/drive/1pXrfcADbDzHzB-Q_oOBZyi7_97uZgRG7#scrollTo=b8491518" st.write("Click below for Jupyter notebook:") st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})") # Button to go back to the main page if st.button("Back to Home"): st.session_state['page'] = "home" # Semi-Structured Data - JSON Page def json_details_page(): import pandas as pd import requests # Page configuration st.set_page_config(page_title="JSON & API Tutorial", layout="wide") # Define colors main_heading_color = "blue" sub_heading_color = "green" bullet_point_color = "white" # Main Title st.markdown(f"

JSON and API Tutorial

", unsafe_allow_html=True) # Section 1: Handling JSON Files st.markdown(f"

Handling JSON Files

", unsafe_allow_html=True) st.markdown(f"

Introduction

", unsafe_allow_html=True) st.markdown( f"", unsafe_allow_html=True, ) st.markdown(f"

Default JSON Format

", unsafe_allow_html=True) st.code('{"Name": ["P1", "P2"], "Age": [23, 24]}', language="json") # Code example for reading JSON st.markdown(f"

Reading JSON Files in Python

", unsafe_allow_html=True) st.code( """ import pandas as pd data = '{"Name": ["P1", "P2"], "Age": [23, 24]}' df = pd.read_json(data) print(df) """, language="python", ) # Section 2: JSON Formats in Pandas st.markdown(f"

JSON Formats in Pandas

", unsafe_allow_html=True) st.markdown( f"", unsafe_allow_html=True, ) # Section 3: Collecting Data from APIs st.markdown(f"

Collecting Data from APIs

", unsafe_allow_html=True) st.markdown( f"", unsafe_allow_html=True, ) # Code example for using an API st.markdown(f"

Example: Fetching Data from an API

", unsafe_allow_html=True) st.code( """ import requests import pandas as pd url = "https://api.example.com/data" response = requests.get(url) if response.status_code == 200: data = response.json() df = pd.json_normalize(data) print(df) else: print(f"Failed to fetch data. Status code: {response.status_code}") """, language="python", ) # Google Colab Link st.markdown("
Download Jupyter Notebook or PDF with Code Examples
", unsafe_allow_html=True) notebook_url = "https://colab.research.google.com/drive/1pIg_zmj04lVmPTdiTU2bU9BLAR2mS5wi?usp=sharing" st.write("Click below for Jupyter notebook:") st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})") if st.button("Back to Home"): st.session_state['page'] = "home" # Semi-Structured Data - XML Page def xml_details_page(): st.title("Semi Structured Data - XML Details") st.markdown("

Handling XML Files(.xlsx)

", unsafe_allow_html=True) st.markdown("

What is XML?

", unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) st.markdown("

Basic Structure of XML(.xlsx)

", unsafe_allow_html=True) st.markdown(""" """, unsafe_allow_html=True) st.markdown("

Example of XML Data

", unsafe_allow_html=True) st.code(""" HARI 22 Male CHANDAN 21 Male """, language="xml") # Google Colab Link st.markdown("
Download Jupyter Notebook or PDF with Code Examples
", unsafe_allow_html=True) notebook_url = "https://colab.research.google.com/drive/14xGAxu_rKAl_eslODfQXoTEpN7NU4lk6" st.write("Click below for Jupyter notebook:") st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})") if st.button("Back to Home"): st.session_state['page'] = "home" # Semi-Structured Data - HTML Page def html_details_page(): st.title("Semi-Structured Data - HTML Details") st.markdown(""" **HTML** (HyperText Markup Language) is used to structure web pages. - Semi-structured data with nested tags. """) # App title st.title("Working with HTML Data in Python") # Section: HTML and DataFrames st.header("HTML and DataFrames") st.write(""" - **HTML** stands for HyperText Markup Language and is a semi-structured format. - HTML uses tags like ``, ``, `
`, and `` to show table data. - Unlike XML, HTML doesn’t let you create any custom tags. - Not all HTML can be changed into dataframes, especially plain text like paragraphs. - Usually, only table-related tags (``, ``, `
`, ``) can be converted into dataframes. """) # Section: Reading HTML Files st.write("**How to Read HTML Files:**") st.code(""" import pandas as pd tables = pd.read_html("path_or_url") """, language="python") st.write(""" - Use `pd.read_html()` to read tables from an HTML file or a website. - This function collects all tables and gives them as a list of dataframes. """) st.write("**How to Get Specific Tables:**") st.code(""" # Select the first table from the list table = tables[0] """, language="python") st.write(""" - The tables are stored as a list, and you can access them using their index number. """) st.write("**Limitations:**") st.write(""" - Some HTML files or websites cannot be read, even if they have tables. - Issues like file permissions or restrictions may stop reading. """) st.write("**Using `match` to Find Specific Tables:**") st.code(""" # Read a specific table by searching for a keyword tables = pd.read_html("path_or_url", match="keyword") """, language="python") st.write(""" - The `match` parameter lets you find tables with specific keywords. - This is useful to pick the right table when many are present. """) # Section: Exporting DataFrames st.header("Exporting DataFrames to HTML") st.write("**How to Export a DataFrame to HTML:**") st.code(""" # Save a dataframe as an HTML file df.to_html("output.html") """, language="python") st.write(""" - This converts your dataframe into an HTML file. - You can save the HTML file at a specified location. """) # Google Colab Link st.markdown("
Download Jupyter Notebook or PDF with Code Examples
", unsafe_allow_html=True) notebook_url = "https://colab.research.google.com/drive/1IgIEoWqw-pHSSMjuWzY2FlFJVIoNwL3C" st.write("Click below for Jupyter notebook:") st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})") if st.button("Back to Home"): st.session_state['page'] = "home" # Unstructured Data - Image Page def image_details_page(): st.title("Unstructured Data - Image Details") st.markdown(""" **Images** are unstructured data represented in pixel values. - Formats include JPEG, PNG, BMP, etc. - Libraries like OpenCV and PIL are used for image processing. """) import numpy as np # Helper function for subheadings def subheading(text): """Displays a subheader with consistent styling.""" st.markdown(f"

{text}

", unsafe_allow_html=True) # Sidebar for navigation st.sidebar.title("Navigation") page = st.sidebar.radio("Go to", ["Introduction", "Basic Operations","Image Conversions"]) # App Title and Description st.title("Image Processing Fundamentals") st.write(""" This app introduces the basics of image processing, helping you understand how images are formed, represented, and handled programmatically. It's designed for beginners exploring computer vision concepts. """) # Introduction Section if page == "Introduction": st.header("Introduction") st.write(""" Images play a crucial role in various fields, including art, science, and technology. In this app, you will learn: - How images are captured and represented. - Different color spaces and their applications. - Basic operations on images using Python libraries. """) st.header("Understanding Images") # Subsections subheading("What is an Image?") st.write(""" An image is a **2D representation of light**, created when light reflects off an object and is captured by a camera or our eyes. """) subheading("How is an Image Formed?") st.write(""" - **Light Source**: Light from sources like the sun or a bulb hits an object. - **Reflection**: Light bounces off the object's surface. - **Capture**: The reflected light is recorded by a camera sensor or the human eye. - In images pixels are the **feautures** and these pixels contains **information** as shape,color,patterns.No of pixels = height*width these both decides the resolution.More no of pixels more clarity more information gained. """) subheading("Why is an Image Represented as a Grid?") st.write(""" - Pixels in an image are arranged in a grid-like structure.Each **row** in the grid corresponds to a **data point** (a group of pixels).Each **column** in the grid represents a **feature** of those data points. - Both image data and tabular data can be visualized as grids.This concept aligns with tabular data, where the structure is similar, but the interpretation differs: - **In images**: Each row represents a set of data points (pixels), and the columns represent their features. - **In tables**:Each row represents an individual data point, and each column corresponds to a feature of that data point. """) st.subheader("Interactive Pixel Grid") # User Input for Height and Width height = st.number_input("Enter Image Height (pixels):", min_value=1, max_value=50, value=10, step=1) width = st.number_input("Enter Image Width (pixels):", min_value=1, max_value=50, value=10, step=1) # Display Resolution resolution = height * width st.write(f"**Image Resolution**: {resolution} pixels") # Generate and Display Pixel Grid st.write("**Pixel Grid Visualization:**") grid = np.random.rand(int(height), int(width)) # Generate random grid values fig, ax = plt.subplots() cax = ax.imshow(grid, cmap="magma") plt.colorbar(cax, ax=ax) # Add color bar for context ax.set_title("Pixel Grid") ax.set_xlabel("Width(pixels)", fontsize=8) # Set smaller font size ax.set_ylabel("Height(pixels)", fontsize=8) # Set smaller font size # Render the Plot st.pyplot(fig) st.header("Color Spaces") # Explanation for Color Spaces st.write(""" Color space is a technique used to represent the colors of an image. This technique helps us preserve the colors while converting them into numerical values, which machine learning models can understand. For example, in image classification tasks like differentiating between dogs and cats: - The first step is to collect a bunch of dog and cat images. These images may be in formats such as PNG, JPG, or JPEG. - However, machine learning models can only understand numbers, so color spaces are used to convert the image colors into numerical representations. """) # Subheading for Black and White color space st.markdown("

1. Black and White

", unsafe_allow_html=True) st.write(""" - Represents only two colors: **Black (0) Pixels** and **White (255) Pixels**. - **Limitation**: It only preserves black and white. """) st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/blackwhite.jpg") # Subheading for Grayscale color space st.markdown("

2. Grayscale

", unsafe_allow_html=True) st.write(""" - 0 pixel value means Black: It represents the darkest shade in a grayscale image. - 1 piexel value means White: It represents the brightest shade in a grayscale image. - Pixel Values between 1 and 254: These Pixel values represent various shades of gray, with increasing brightness as the value approaches 254. - **Limitation**: - Gray Scale images cannot preserve coloured images as it is having only gray shades """) st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/grayscale.jpeg") # Subheading for RGB color space st.markdown("

3. RGB

", unsafe_allow_html=True) st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/bunny.jpg") st.write(""" - To represent coloured image we have to convert image in 3D array , Mixture of three 2D arrays is **RGB**. - The value in each array ranges from R(0,255) ,G(0,255) ,B(0,255) - By mixing different intensities of red, green, and blue,we can create over **16 million possible colors**. - The **Red channel** has pixel values with red set to 255, and green and blue to 0. - The **Green channel** has pixel values with green set to 255, and red and blue to 0. - The **Blue channel** has pixel values with blue set to 255, and red and green to 0. - When merged, these channels form a complete color image. """) st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/bunny1.jpg") # Basic Operations Section elif page =="Basic Operations": st.title("What is OpenCV?") st.header("Understanding Open Source Computer Vision") # Introduction st.write(""" OpenCV (Open Source Computer Vision) is a free and open-source library designed for real-time computer vision tasks. It is widely used in industries like healthcare, security, robotics, and AI to process images and videos effectively. """) st.code(""" import cv2 import numpy as np """) # Features Section st.subheader("Key Features of OpenCV:") st.markdown(""" - **Image Processing**: Resize, crop, filter, and manipulate images easily. - **Object Detection**: Detect faces, objects, and track their movements in real-time. - **Video Analysis**: Perform video stabilization, motion detection, and frame-by-frame analysis. - **Machine Learning Integration**: Combine with AI frameworks for advanced tasks like face recognition and augmented reality. """) # Theory Section st.markdown("""

Reading an image

""", unsafe_allow_html=True) st.markdown(""" - It converts an 2D image into Machine representation value array. - **cv2.imread("path)** this method going to convert image to 3D aray as it used default colour space **RGB**. - The data type of image should be **uint8**. """) st.code(""" # Code to read an image img = cv2.imread('BGR_image', 1) # by default it considers this as coloured image print(img) """) st.code(""" img = cv2.imread("gray_scale_image",0) # when we want it in 2D array use parametre `flags=0` it considers as grayscale image print(img) """) # Theory Section st.markdown("""

imshow()

""", unsafe_allow_html=True) st.markdown(""" - After creating or reading an image, we can display it using OpenCV. Here’s how the key functions work together: - The `imshow()` function creates a pop-up window to display the image. - Internally, it converts the numerical array into a visual image. - **Parameters**: Window Name: Title of the pop-up window (string). Image Array: The array representing the image. """) # Theory Section st.markdown("""

waitkey()

""", unsafe_allow_html=True) st.markdown(""" - The main purpose Waits for a key press and adds a delay before closing the pop-up window. - `waitKey(0)` or `waitKey()` Keeps the window open indefinitely until a key is pressed. - `waitkey(10)` After 10 milli seconds the pop up window will be closed when we use waitkey(n) after n milliseconds window closes. """) # Theory Section st.markdown("""

destroyAllWindows()

""", unsafe_allow_html=True) st.markdown(""" - **Purpose**: Closes all OpenCV-created windows. - **Usage**:This makes sure that memory is cleared and helps avoid crashes by getting rid of resources when the image is no longer needed. """) st.code(""" cv2.destroyAllWindows() # When we give this all temporary windows will be closed """) st.markdown("""
These three functions must work together to display and manage images effectively. /h5> """, unsafe_allow_html=True) st.code(""" img = cv2.imshow("Window name",image) # Window name : Name of the window # image : The image we created # Code to wait for a key press cv2.waitKey() # Wait indefinitely until key press # Code to close all windows cv2.destroyAllWindows() # Close all OpenCV windows """) st.markdown(""" ### Additional Notes - **Why Use `cv2.waitKey`?** Without this, the image display window will close immediately after the program finishes execution. - **Handling Pop-Up Windows** - Use `cv2.destroyAllWindows()` to close all pop-up windows and release system resources properly. """) st.markdown("""

Saving an Image

""", unsafe_allow_html=True) # About imwrite() function st.write(""" To save an image file in OpenCV, we use the **imwrite()** function. It converts the numerical array (image data) back into an image file format, such as `.jpg`, `.png`, or `.bmp`. """) # Code example st.code(""" cv2.imwrite('image.jpg', image_array) # 'image.jpg' it is the name of the output file print("Wow your image is saved!") """, language="python") elif page =="Image Conversions": from PIL import Image # Title of the app st.markdown("""

Creating a Black and White Image

""", unsafe_allow_html=True) # Explanation st.write(""" In OpenCV, black and white images are created by filling a matrix with pixel values: - **Black image**: When the pixel values are set to 0. - **White image**: When the pixel values are set to 255. """) # Display the code st.code(""" import numpy as np import streamlit as st white_img= np.full((500,500),255,dtype=np.uint8) black_img = np.zeros((500,500),dtype=np.uint8) cv2.imshow("white",white_img) #white image is displayed cv2.imshow("black",black_img) #black image is displayed cv2.waitKey() # until we close the window it displays the image cv2.destroyAllWindows() # Close all temporary windows """, language="python") st.markdown("
Download Jupyter Notebook or PDF with Code Examples
", unsafe_allow_html=True) notebook_url = "https://colab.research.google.com/drive/1ePttPUBbaq9DjGS0OuzLhe32KNPStaLR" st.write("Click below for Jupyter notebook:") st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})") # Section 1: Grayscale Image st.markdown("""

Creating a Grayscale Image

""", unsafe_allow_html=True) st.write(""" In a grayscale image, 0 is black, 255 is white, and pixel values between 1 and 254 represent varying shades of gray """) st.code(""" # Grayscale image creation gray_img = np.full((500, 500), 155, dtype=np.uint8) #155 is a medium-light gray, closer to white than black. # Display in OpenCV cv2.imshow("Gray Image", gray_img) #Gray scale image is created cv2.waitKey(0) cv2.destroyAllWindows() """, language="python") st.markdown("""

Creating a BGR image

""", unsafe_allow_html=True) st.write(""" - The **Red channel** has pixel values with red set to 255, and green and blue to 0. - The **Green channel** has pixel values with green set to 255, and red and blue to 0. - The **Blue channel** has pixel values with blue set to 255, and red and green to 0. - When merged, these channels form a complete color image. """) st.markdown("""

To represent a coloured image, we have to convert the image into a 3D array. The mixture of three 2D arrays is RGB.

""", unsafe_allow_html=True) st.code(""" # Create individual color channels b = np.full((200, 200), 255, dtype=np.uint8) # Blue channel g = np.zeros((200, 200), dtype=np.uint8) # Green channel r = np.zeros((200, 200), dtype=np.uint8) # Red channel # Merge the color channels to create RGB images b_img = cv2.merge([b, g, r]) # Blue image g_img = cv2.merge([g, b, r]) # Green image r_img = cv2.merge([r, g, b]) # Red image # Display the images cv2.imshow("Blue", b_img) cv2.imshow("Green", g_img) cv2.imshow("Red", r_img) cv2.waitKey(0) # Wait until a key is pressed cv2.destroyAllWindows() # Close all OpenCV windows """, language="python") st.markdown("""

Channel Splitting

""", unsafe_allow_html=True) # About cv2.split() function st.write(""" The `cv2.split()` function in OpenCV is used to separate an image into its individual color channels. It generates separate single-channel arrays for each color, which can then be manipulated independently. For example, it can divide an RGB image into its Red, Green, and Blue components. """) # Syntax for cv2.split() function st.code(""" # Syntax for cv2.split() channels = cv2.split(image) # image: The input image (e.g., an RGB image). # channels: A list of single-channel images (e.g., Blue, Green, Red). """, language="python") # Heading for the section st.markdown("""

Splitting Channels

""", unsafe_allow_html=True) # Code Example for Splitting and Merging Color Channels st.code(""" img = cv2.imread("path of the image") # Load the image b, g, r = cv2.split(img) # Separate the image into Blue, Green, and Red channels zeros = np.zeros(img.shape[:-1], dtype=np.uint8) # Create a blank array for the empty channels blue_channel = cv2.merge([b, zeros, zeros]) # The Blue channel has blue set to 255, and red and green to 0 green_channel = cv2.merge([zeros, g, zeros]) # The Green channel has green set to 255, and red and blue to 0 red_channel = cv2.merge([zeros, zeros, r]) # The Red channel has red set to 255, and green and blue to 0 # Show the separate color channels and the original image cv2.imshow("Blue_channel", blue_channel) cv2.imshow("Green_channel", green_channel) cv2.imshow("Red_channel", red_channel) cv2.waitKey(0) cv2.destroyAllWindows() """, language="python") st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/BGR%20to%20Split.jpg") st.markdown("""

Combining Channels

""", unsafe_allow_html=True) st.write(""" To create a full color image from separate single-channel images (such as Red, Green, and Blue), the **cv2.merge()** function is used. It combines individual color channels into a single, complete color image. """) # Code Example for Splitting and Merging Color Channels st.code(""" img = cv2.imread("path of the image") # Load the image b, g, r = cv2.split(img) # Separate the image into Blue, Green, and Red channels zeros = np.zeros(img.shape[:-1], dtype=np.uint8) # Create a blank array for the empty channels blue_channel = cv2.merge([b, zeros, zeros]) # The Blue channel has blue set to 255, and red and green to 0 green_channel = cv2.merge([zeros, g, zeros]) # The Green channel has green set to 255, and red and blue to 0 red_channel = cv2.merge([zeros, zeros, r]) # The Red channel has red set to 255, and green and blue to 0 # Show the separate color channels and the original image cv2.imshow("Blue_channel", blue_channel) cv2.imshow("Green_channel", green_channel) cv2.imshow("Red_channel", red_channel) cv2.imshow("merged_image", cv2.merge([blue_channel, green_channel, red_channel])) cv2.waitKey(0) cv2.destroyAllWindows() """, language="python") st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/merging%20BGR.jpg") # Title of the app st.markdown("""

Converting colour spaces

""", unsafe_allow_html=True) st.write(""" When working with image arrays, we might need to convert or modify their color spaces. OpenCV provides the `cv2.cvtColor()` method to achieve this. It allows us to change an image's color space to a desired format **BGR to Grayscale**. """) st.code(""" # Convert from BGR to Grayscale img_gray = cv2.cvtColor(BGR_img, cv2.COLOR_BGR2GRAY) """) st.image("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/BGR2Gray.jpg") if st.button("Back to Home"): st.session_state['page'] = "home" # Unstructured Data - Video Page def video_details_page(): # Definition of Video st.markdown("

What is video?

", unsafe_allow_html=True) st.write(""" A video is essentially a series of images, called frames, played quickly one after another to create the illusion of motion. For example, a sequence of images like I1, I2, I3, ..., In transitions so rapidly that the individual frames aren't noticeable to our eyes. This rapid switching between frames creates the appearance of continuous motion. **The smoothness of a video depends on how many frames are shown per second, measured in frames per second (fps)** - **30 fps**: 30 frames are displayed every second, which gives decent smoothness. - **60 fps**: 60 frames are displayed every second, making the video smoother. """) st.markdown("

Understanding Video Processing with OpenCV

", unsafe_allow_html=True) st.write(""" **Load the Video** - Load Video: Use `cv2.VideoCapture()` with the video file path to load and open the video. **Read Frames** - Read Frames: OpenCV reads each video frame in a loop using the read() function until the video ends. **Display Frames** - Frames are displayed sequentially with cv2.imshow(), simulating video playback. **Exit Playback** - Press a key (e.g., 'q') to stop playback and exit the loop. """) st.code(""" # Reading the video vid = cv2.VideoCapture("Here give the path of the vedio") # Dividing the video into frames and looping each and very frame by suing while loop as we dont how many frames while True: succ,img = vid.read() if succ == False: # here if the frame doesnot exist break break cv2.imshow("Window name",img) # display the video if cv2.waitKey(1)& 255 == ord("q"): # to interupt the vedio or to come out of video in the middle use ascii value break cv2.destroyAllWindows() # removing all the tempory memory RAM """, language = "python") # Use st.markdown to display the explanation st.markdown("

Understanding vid.read()

", unsafe_allow_html=True) st.markdown(""" - `vid.read()` is used to grab one frame (image) at a time from a video. - It gives back two things: 1. **`succ`**: A `True` or `False` value. - **`True`** means the frame was successfully loaded. - **`False`** means the frame could not be loaded (usually because the video has ended). 2. **`img`**: The actual frame (image) from the video, which is in the form of a NumPy array. This image can then be processed just like any regular picture. """) st.markdown("

Understanding cv2.waitkey()

", unsafe_allow_html=True) st.markdown(""" - **`cv2.waitKey(1)`**: - This function waits for a key to be pressed for 1 millisecond. - If a key is pressed, it returns the code of that key. If no key is pressed, it returns `-1`. - **`& 255`**: - This part ensures the key code is correctly interpreted across different systems. - It keeps only the last 8 bits of the code (the actual key code). - **`ord('q')`**: - This gets the ASCII value of the letter `'q'`. - The ASCII value for `'q'` is 113. - This is used to check if the user pressed the `'q'` key to stop the program. """) st.code(""" if cv2.waitKey(1)& 255 == ord("q"): break """,language="python") st.markdown("
Download Jupyter Notebook or PDF with Code Examples
", unsafe_allow_html=True) notebook_url = "https://colab.research.google.com/drive/1JD2AbzrHaDEg2BMFHeNdFCPbHk3Nb1pW" st.write("Click below for Jupyter notebook:") st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})") st.markdown("

Converting BGR Video to Grayscale

", unsafe_allow_html=True) # Use st.markdown to display the explanation st.markdown(""" You can process video frames one by one and convert them as needed. In this example, we will: - Convert each frame of a video from BGR (Blue, Green, Red) color format to grayscale (a black-and-white image). - Display both the original video frames and the grayscale frames side by side. """) # Use st.code to display the OpenCV code st.code(""" import cv2 # Load the video vid = cv2.VideoCapture("path of the video") while True: succ, img = vid.read() # Reading the video # Dividing the video into frames and looping through each frame as we don't know how many frames if succ == False: # If the frame does not exist, break break img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Converting BGR image to Grayscale cv2.imshow("video_color", img) # Display the original video cv2.imshow("video_gray", img1) # Display the grayscale video if cv2.waitKey(1) & 255 == ord("q"): # To interrupt the video or stop in the middle using ASCII value break cv2.destroyAllWindows() # Removing all the temporary memory (RAM) """, language="python") st.markdown("

Splitting video into 3 Different channels (B,G,R)

", unsafe_allow_html=True) # Use st.markdown to display the explanation st.markdown(""" Each frame of a colored video consists of three channels: Blue, Green, and Red (BGR). In this example, we will: - Split each frame of the video into separate Blue, Green, and Red color channels. - Display the original video alongside each individual color channel. """) # Use st.code to display the OpenCV code st.code(""" import cv2 import numpy as np # Load the video vid = cv2.VideoCapture("path of the video") while True: succ, img = vid.read() if succ == False: break # Split the image into Blue, Green, and Red channels b, g, r = cv2.split(img) z = np.zeros(b.shape, dtype=np.uint8) # Create a blank channel # Convert the image to grayscale img1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Display the individual color channels cv2.imshow("bluechannel", cv2.merge([b, z, z])) cv2.imshow("green_channel", cv2.merge([z, g, z])) cv2.imshow("red_channel", cv2.merge([z, z, r])) # Display the grayscale video cv2.imshow("video_gray", img1) if cv2.waitKey(100) & 255 == ord("q"): break cv2.destroyAllWindows() # Remove temporary windows """, language="python") st.markdown("

Live Streaming with Webcam

", unsafe_allow_html=True) st.markdown("
Download Jupyter Notebook or PDF with Code Examples
", unsafe_allow_html=True) notebook_url = "https://colab.research.google.com/drive/1bbw_pOPjiCXghTnfZCnPmNz9znn9Utgp" st.write("Click below for Jupyter notebook:") st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})") # Display the explanation in markdown st.markdown(""" OpenCV allows you to use your webcam for live video streaming. The `cv2.VideoCapture()` function is used to activate the webcam. Here's how it works: - `cv2.VideoCapture(0)`: The `0` tells OpenCV to use the default webcam on your computer. If you have multiple cameras, you can use other numbers (like 1, 2) to access those cameras. - This function establishes a connection with the webcam and begins capturing video frames in real time. The following example demonstrates how to: - Activate the webcam. - Display the live stream. - Close the webcam window by pressing the 'p' key. """) # Display the OpenCV code st.code(""" import cv2 # Capture video from the default webcam (ID = 0) vid = cv2.VideoCapture(0) while True: suc, img = vid.read() if suc == False: print("Web Camera is not working") break cv2.imshow("live stream", img) # Exit the loop when 'p' key is pressed if cv2.waitKey(1) & 255 == ord('p'): break cv2.destroyAllWindows() """, language="python") st.markdown("

Dual Webcam Stream Color vs Grayscale Capture

", unsafe_allow_html=True) st.markdown(""" - 1. The first webcam displays the original video feed from the camera. - 2. The second webcam shows the same video feed, but converted to grayscale, where the color information is removed, leaving only varying shades of gray. """) st.code(""" vid = cv2.VideoCapture(0) # default id = 0 while True: suc,img=vid.read() if suc == False: print("Web Camera is not working") break img1 = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) cv2.imshow("live stream",img) # orginal stream cv2.imshow("Grayscale live stream",img1) # Gray Scale stream if cv2.waitKey(1) & (255) == ord("q"): break cv2.destroyAllWindows() """,language = "python") st.markdown("

Webcam Stream with RGB Channel Separation

", unsafe_allow_html=True) st.markdown(""" - The image captured by the webcam is divided into three parts: Red, Green, and Blue. This is done using `cv2.split()` - The separate Red, Green, and Blue images are then combined back into three full-color images using `cv2.merge()`. - This lets us see each color channel on its own, but in full color. """) st.code(""" vid = cv2.VideoCapture(0) # default id = 0 while True: suc,img=vid.read() if suc == False: print("Web Camera is not working") break b,g,r=cv2.split(img) z = np.zeros(b.shape,dtype=np.uint8) cv2.imshow("live stream",img) cv2.imshow("livestream1",cv2.merge([b,z,z])) # Blue channel cv2.imshow("livestream2",cv2.merge([z,g,z])) # Green channel cv2.imshow("livestream3",cv2.merge([z,z,r])) # Red channel if cv2.waitKey(1) & (255) == ord("q"): break cv2.destroyAllWindows() """,language="python") st.markdown("

Webcam Frame Capture and Save

", unsafe_allow_html=True) st.markdown(""" - **Activate Webcam**: The webcam is activated automatically when the application starts. - **Capture Frames**: Press the 's' key to capture and save the current frame to the 'captured_frames' folder. - **Stop Webcam Feed**: Press the 'p' key to stop the webcam and close the application. """) st.code(""" vid = cv2.VideoCapture(0) # default id = 0 c=0 while True: suc,img=vid.read() if suc == False: print("Web Camera is not working") break cv2.imshow("video",img) if cv2.waitKey(1)& (255) == ord("s"): cv2.imwrite("Path to save".format(c),img) #path to save the images print("image have been captured") c+=1 if cv2.waitKey(1)& (255) == ord("q"): break cv2.destroyAllWindows() """,language = "python") st.markdown("
Download Jupyter Notebook or PDF with Code Examples
", unsafe_allow_html=True) notebook_url = "https://colab.research.google.com/drive/1bbw_pOPjiCXghTnfZCnPmNz9znn9Utgp" st.write("Click below for Jupyter notebook:") st.markdown(f"[Open Jupyter Notebook in Google Colab]({notebook_url})") # Open Cv Project if st.button("opencv_projects"): st.session_state['page'] = "OpenCV Projects" def opencv_projects_page(): st.title("OpenCV Projects") st.markdown("""

OpenCV Projects

""", unsafe_allow_html=True) # Project 1: Converting an Image into Tabular Data st.markdown("""

Converting an Image into Tabular Data

This project explains how to convert an image into tabular data by extracting pixel values and representing them as structured rows and columns for analysis or machine learning tasks.

""", unsafe_allow_html=True) st.markdown(""" Check out the project on GitHub """, unsafe_allow_html=True) # Project 2: Converting a Video into Tabular Data st.markdown("""

Converting a Video into Tabular Data

Learn to process videos frame by frame and extract pixel data from each frame. This project demonstrates how to represent video data in a structured tabular format.

""", unsafe_allow_html=True) st.markdown(""" Check out the project on GitHub """, unsafe_allow_html=True) # Project 3: Animation Project st.markdown("""

A Tale of Integrity: Finding Money, Choosing Honesty

This animation tells the story of a young boy who finds a bundle of money. Torn between keeping it or doing the right thing, he remembers his grandfather’s words: "True character shines through in moments of choice." He chooses integrity and returns the money to its rightful owner, reminding us all that honesty is priceless.

""", unsafe_allow_html=True) st.markdown(""" Check out the animation on GitHub """, unsafe_allow_html=True) st.video("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/full_frame_video.mp4") # Project 4: GIF Project st.markdown("""

The Coding Journey: Debugging Woes Turned Joy (GIF)

This humorous and relatable GIF portrays every coder’s struggle: A boy sits at his desk exclaiming, "My code is not working; I don’t know what to do!" Moments later, he joyfully discovers, "It’s working perfectly!" – capturing the emotional highs and lows of debugging.

""", unsafe_allow_html=True) st.markdown(""" Check out the GIF on GitHub """, unsafe_allow_html=True) st.video("https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/giphy_animation.mp4") if st.button("Image_Augmentation"): st.session_state['page'] = "Image_Augmentation" def Image_Augmentation_page(): st.title("Image Augmentation") # Heading st.markdown("""

What is Image Augmentation?

""", unsafe_allow_html=True) # Definition st.write(""" Image augmentation is a method used to enhance the size and variety of an image dataset by applying transformations to existing images. These transformations introduce variations while preserving the core features of the image, making it useful for training machine learning models to handle diverse inputs. *How It Works* Image augmentation applies transformations like resizing, rotation, flipping, and more to the original image. These changes simulate real-world variations, ensuring that machine learning models can identify patterns even with differences in perspective, scale, or lighting conditions. The key idea is to preserve the original features of the image while introducing diversity. For example, if we take an image and apply five different transformations, we generate five new variations of that image. This provides the model with more data to learn from, improving its performance and ability to generalize. """) # Types of Image Augmentation st.markdown("""

Types of Image Augmentation

""", unsafe_allow_html=True) st.write(""" Image augmentation is broadly categorized into two types: 1. *Affine Transformations* 2. *Non-Affine Transformations* """) # Affine Transformations st.markdown("""

Affine Transformations

""", unsafe_allow_html=True) st.write(""" *Affine Transformations* are transformations where: 1. The transformed image and the original image maintain *parallelism between lines*. 2. In some cases, the *angle between lines* and the *length of the lines* may also be preserved. These transformations ensure that the geometric relationships within the image remain intact, even as the image is resized, rotated, or shifted. Affine transformations are performed using a mathematical operation known as an *Affine Matrix*, which maps the original image coordinates to new coordinates. """) st.markdown("""

Common Affine Transformations:

""", unsafe_allow_html=True) st.write(""" 1. *Scaling*: Changing the size of the image while maintaining its proportions. 2. *Translation*: Shifting the image horizontally, vertically, or both. 3. *Rotation*: Rotating the image around a specified center point. 4. *Shearing*: Slanting the image along the x or y axis, creating a skewed effect. 5. *Cropping*: Extracting a specific portion of the image, usually to focus on a region of interest. These transformations are linear, meaning the relationships between points in the image remain consistent. """) st.image( "https://huggingface.co/spaces/hari3485/DiveIntoML/resolve/main/Images/Image-Augmentation.jpg", use_container_width=True) # Explanation for Translation st.markdown("""

Translation

""", unsafe_allow_html=True) st.write(""" *Translation* involves moving an image from one location to another along the x-axis, y-axis, or both. It adjusts the position of the image on the canvas without modifying its original content. The transformation is performed using a translation matrix: """) st.write(""" The translation matrix is represented as: [[1, 0, tx], [0, 1, ty]] Here: - *tx*: Specifies the shift along the x-axis (horizontal axis). - *ty*: Specifies the shift along the y-axis (vertical axis). """) st.code(""" # Load the image img = cv2.imread('path_to_image.jpg') # Define translation parameters tx = 100 # Shift 100 pixels along the x-axis ty = 50 # Shift 50 pixels along the y-axis # Create the translation matrix translation_matrix = np.array([[1, 0, tx], [0, 1, ty]], dtype=np.float32) # Apply translation translated_img = cv2.warpAffine(img, translation_matrix, (300, 300)) # Display the images cv2.imshow("Original Image", img) cv2.imshow("Translated Image", translated_img) cv2.waitKey(0) cv2.destroyAllWindows() """, language="python") # Explanation for Rotation st.markdown("""

Rotation

""", unsafe_allow_html=True) st.write(""" *Rotation* involves rotating an image around a specified center point by a given angle. It changes the orientation of the image while preserving its content. The rotation is performed using a rotation matrix: [[cos(θ), -sin(θ), tx], [sin(θ), cos(θ), ty]] Here: - *θ (theta)*: Specifies the rotation angle in degrees. - *tx, ty*: Specifies the adjustments to reposition the rotated image. - *Scale*: A factor that can resize the image during rotation. """) # Code Example st.code(""" # Load the image img = cv2.imread('path_to_image.jpg') # Define the rotation matrix r_m = cv2.getRotationMatrix2D((1347, 900), 50, 1) # Center at (1347, 900), Rotate by 50 degrees, Scale = 1 # Apply rotation r_img = cv2.warpAffine(img, r_m, (580, 500), borderMode=cv2.BORDER_DEFAULT) # Display the images cv2.imshow("Original Image", img) cv2.imshow("Rotated Image", r_img) cv2.waitKey(0) cv2.destroyAllWindows() """, language="python") # Explanation for Direct Rotation st.markdown("""

Direct Rotation Using cv2.rotate

""", unsafe_allow_html=True) st.write(""" OpenCV provides a direct method for rotating images with predefined angles: cv2.rotate. This method simplifies rotation operations for 90°, 180°, and 270° (clockwise or counterclockwise) without requiring a custom rotation matrix. - **cv2.ROTATE_180**: Rotates the image by 180°. - **cv2.ROTATE_90_CLOCKWISE**: Rotates the image by 90° clockwise. - **cv2.ROTATE_90_COUNTERCLOCKWISE**: Rotates the image by 90° counterclockwise. """) # Code Example st.code(""" # Rotate the image using predefined rotation modes img1 = cv2.rotate(img, cv2.ROTATE_180) # Rotate 180 degrees img2 = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE) # Rotate 90 degrees clockwise img3 = cv2.rotate(img, cv2.ROTATE_90_COUNTERCLOCKWISE) # Rotate 90 degrees counterclockwise # Display the images cv2.imshow("Original Image", img) cv2.imshow("Rotated 180°", img1) cv2.imshow("Rotated 90° Clockwise", img2) cv2.imshow("Rotated 90° Counterclockwise", img3) cv2.waitKey(0) cv2.destroyAllWindows() """, language="python") # Explanation for Shearing st.markdown("""

Shearing

""", unsafe_allow_html=True) st.write(""" *Shearing* is a transformation that slants the shape of an image along the x-axis, y-axis, or both. It skews the content of the image, creating a shifted or stretched effect. The transformation is performed using a shearing matrix: """) st.write(""" The shearing matrix is represented as: For x-axis shear: [[1, shx, 0], [0, 1, 0]] For y-axis shear: [[1, 0, 0], [shy, 1, 0]] Here: - *shx*: Shear factor along the x-axis. - *shy*: Shear factor along the y-axis. """) st.code(""" # Load the image img = cv2.imread('path_to_image.jpg') # Define shearing parameters shx = 1 # Shear factor along the x-axis shy = 3 # Shear factor along the y-axis tx = 0 # Translation along the x-axis ty = 0 # Translation along the y-axis # Create the shearing matrix shearing_matrix = np.array([[1, shx, tx], [shy, 1, ty]], dtype=np.float32) # Apply the shearing transformation sheared_img = cv2.warpAffine(img, shearing_matrix, (300, 300)) # Display the original and sheared images cv2.imshow("Original Image", img) cv2.imshow("Sheared Image", sheared_img) cv2.waitKey(0) cv2.destroyAllWindows() """, language="python") # Explanation for Scaling st.markdown("""

Scaling

""", unsafe_allow_html=True) st.write(""" *Scaling* is a transformation that changes the size of an image. It can be used to enlarge or shrink the image while maintaining its original proportions or altering them. Scaling is performed using a scaling matrix: """) st.write(""" The scaling matrix is represented as: [[sx, 0, 0], [0, sy, 0]] Here: - *sx*: Scaling factor along the x-axis. - *sy*: Scaling factor along the y-axis. - If sx and sy are greater than 1, the image is enlarged. - If sx and sy are less than 1, the image is shrunk. """) st.code(""" # Load the image img = cv2.imread('path_to_image.jpg') # Define scaling and translation parameters sx, sy = 2, 1 # Scale by 2 along the x-axis and 1 along the y-axis tx, ty = 0, 0 # No translation # Create the scaling matrix scaling_matrix = np.array([[sx, 0, tx], [0, sy, ty]], dtype=np.float32) # Apply scaling scaled_img = cv2.warpAffine(img, scaling_matrix, (2 * 300, 300)) # Display the images cv2.imshow("Original Image", img) cv2.imshow("Scaled Image", scaled_img) cv2.waitKey(0) cv2.destroyAllWindows() """, language="python") # Explanation for Cropping st.markdown("""

Cropping

""", unsafe_allow_html=True) st.write(""" *Cropping* is a transformation that extracts a specific portion of an image, usually to focus on a region of interest. It is achieved by selecting a rectangular region of the image using pixel coordinates. The process involves defining the coordinates for: - *Top-left corner (x1, y1)*: Starting point of the crop. - *Bottom-right corner (x2, y2)*: Ending point of the crop. """) st.code(""" # Load the image img = cv2.imread('path_to_image.jpg') # Define crop coordinates x1, y1 = 50, 50 # Top-left corner x2, y2 = 200, 200 # Bottom-right corner # Crop the image cropped_img = img[y1:y2, x1:x2] # Display the images cv2.imshow("Original Image", img) cv2.imshow("Cropped Image", cropped_img) cv2.waitKey(0) cv2.destroyAllWindows() """, language="python") # Function to apply affine transformations def apply_affine_transformation(image, transformation_type): transformed_images = [] rows, cols, _ = image.shape for i in range(1, 11): # Generate 10 variations if transformation_type == "Rotation": angle = i * 10 M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1) elif transformation_type == "Scaling": scale = 1 + (i * 0.05) # Reduced scale increments M = np.float32([[scale, 0, 0], [0, scale, 0]]) elif transformation_type == "Translation": tx, ty = i * 5, i * 5 # Reduced translation M = np.float32([[1, 0, tx], [0, 1, ty]]) elif transformation_type == "Shearing": shear = 0.05 * i # Reduced shear factor M = np.float32([[1, shear, 0], [shear, 1, 0]]) elif transformation_type == "Cropping": # Simple cropping: reduce the size incrementally x1, y1 = i * 5, i * 5 x2, y2 = cols - i * 5, rows - i * 5 if x1 < x2 and y1 < y2: # Ensure cropping dimensions are valid transformed_image = image[y1:y2, x1:x2] transformed_images.append(transformed_image) continue # Skip warpAffine for cropping else: st.error("Invalid transformation type!") return [] transformed_image = cv2.warpAffine(image, M, (cols, rows)) transformed_images.append(transformed_image) return transformed_images # Streamlit App st.title("Dynamic Affine Transformation Tool") st.write("Select a transformation type to proceed and learn how it works before uploading an image.") # Transformation Options transformation = st.selectbox( "Step 1: Select a transformation type:", ["Select a Transformation", "Rotation", "Scaling", "Translation", "Shearing", "Cropping"] ) # Ensure the user selects a valid transformation if transformation != "Select a Transformation": # Provide guidance based on the selected transformation if transformation == "Rotation": st.info("Rotation rotates the image around a fixed point. Angles are applied in steps of 10 degrees.") elif transformation == "Scaling": st.info("Scaling adjusts the size of the image. The scale factor increases incrementally.") elif transformation == "Translation": st.info("Translation shifts the image horizontally and vertically in small steps.") elif transformation == "Shearing": st.info("Shearing skews the image along the x-axis or y-axis, creating a slanted effect.") elif transformation == "Cropping": st.info("Cropping trims the image edges step by step to focus on a smaller region.") # Image Uploader (Only appears after selection) uploaded_file = st.file_uploader("Step 2: Now, upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file: # Read the uploaded file into a numpy array using OpenCV file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR) # Display the uploaded image st.image(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), caption="Uploaded Image", use_container_width=True) # Automatically apply the transformation after upload transformed_images = apply_affine_transformation(image, transformation) if transformed_images: st.write(f"Generated {len(transformed_images)} images using {transformation}:") # Display all transformed images for i, img in enumerate(transformed_images): st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), caption=f"{transformation} {i+1}", use_container_width=True) # Create ZIP file for download zip_buffer = io.BytesIO() with zipfile.ZipFile(zip_buffer, "w") as zip_file: for i, img in enumerate(transformed_images): # Save each image as bytes _, img_encoded = cv2.imencode('.jpg', img) zip_file.writestr(f"{transformation}image{i+1}.jpg", img_encoded.tobytes()) zip_buffer.seek(0) st.download_button( label=f"Download All {transformation} Images", data=zip_buffer, file_name=f"{transformation}_transformed_images.zip", mime="application/zip" ) else: st.warning("No transformed images generated. Please check your transformation type.") else: st.warning("Please upload an image to proceed.") else: st.warning("Please select a valid transformation type to proceed.") if st.button("Back to Home"): st.session_state['page'] = "home" # Main Page def main_page(): # Title and Introduction st.title("📊 What is Data?") st.write("Data is information we collect to understand or learn something. It can be numbers, words, pictures, or even videos. For example, counting the number of students in a class gives us data.") # Types of Data st.header("📂 Types of Data") st.write("Data is divided into three types based on how it is organized: **Structured Data**, **Semi-Structured Data**, and **Unstructured Data**.") data_type = st.radio("Select Data Type:", ["Structured", "Semi-Structured", "Unstructured"]) if data_type == "Structured": # Structured Data st.subheader("1️⃣ Structured Data 🗂️") st.write(""" This type of data is well-organized, like in a table with rows and columns. It's easy to store and analyze. - **Examples:** - Names, phone numbers, and addresses in a spreadsheet. - Sales records in a database. """) st.write("**💡 Simple Story:** Think of a grocery store where every item has its price, category, and stock neatly listed on a computer.") names = ["Hari", "Harika", "Varshi", "Shamitha"] cities = ["Hyderabad", "Bangalore", "Chennai", "Mumbai"] marks = [90, 87, 98, 94] # Create the DataFrame data = { "Name": names, "City": cities, "Marks": marks } df = pd.DataFrame(data) st.subheader("Details of Students") st.table(df) if st.button("Excel"): st.session_state['page'] = "excel" elif data_type == "Semi-Structured": # Semi-Structured Data st.subheader("2️⃣ Semi-Structured Data 📜") st.write(""" This type of data is somewhat organized but not as strict as tables. It has a format but doesn’t fit perfectly into rows and columns. - **Examples:** - Emails (with subject, sender, and message). - JSON or XML files used in apps and websites. """) st.write("**💡 Simple Story:** Imagine writing a letter that has a date, sender’s name, and the main message. It’s structured in parts but not as fixed as a table.") st.markdown(""" Unlike structured data, **semi-structured data** does not require a fixed schema. However, it often includes tags or markers to separate elements. This means that the data can be organized in a flexible way, allowing you to add new data elements without disturbing the existing ones. """) # Display explanation for Self-Descriptive Tags st.subheader("Self-Descriptive Tags:") st.markdown(""" Semi-structured data uses **tags** or **keys** to identify and describe the data. For example, in **JSON** and **XML**, the tags or keys help to organize and label the data, making it easier to understand. """) st.write("Semi-Structured Data includes formats like CSV, JSON, XML, and HTML.") # JSON Data json_data = { "Name": "Hari", "City": "Hyderabad", "Marks": 90 } # XML Data as a string xml_data = """ Hari Hyderabad 90 """ html_data = """ Student Info

Details of Students

NameCityMarks
HariHyderabad90
HarikaBangalore87
VarshiChennai98
ShamithaMumbai94
""" # Display JSON st.subheader("JSON Data:") st.json(json_data) # Display XML st.subheader("XML Data:") st.code(xml_data, language='xml') st.title("Student Data Table HTML Format") st.code("""
NameCityMarks
JohnNew York95
AliceLos Angeles88
BobChicago92
EveSan Francisco90
""",language = "python") # Display the table using markdown st.markdown(html_data, unsafe_allow_html=True) if st.button("CSV"): st.session_state['page'] = "csv" if st.button("JSON"): st.session_state['page'] = "json" if st.button("XML"): st.session_state['page'] = "xml" if st.button("HTML"): st.session_state['page'] = "html" elif data_type == "Unstructured": # Unstructured Data st.subheader("3️⃣ Unstructured Data 📷") st.write(""" This is data without any specific organization. It’s harder to analyze directly. - **Examples:** - Photos and videos. - Social media posts or text messages. """) st.write("**💡 Simple Story:** Think of a messy drawer with random papers, photos, and tools. It’s useful, but you need to sort it out to find what you need.") st.write("Unstructured Data includes formats like Images and Videos.") # Image Definition st.subheader("What is an Image?") st.markdown(""" An image is a visual representation, such as a photo or picture, made up of pixels. It captures information visually and can be in various formats like JPEG, PNG, or HEIC. """) # Image Formats st.subheader("Image Formats:") st.markdown(""" 1. **JPEG (.jpg)**: Common for photos; uses lossy compression to reduce file size but loses some quality. 2. **JPEG 2000 (.jp2)**: Improved version of JPEG with better compression and quality, but not widely supported. 3. **HEIC (.heic)**: High-efficiency format, used on iPhones; offers better compression than JPEG without losing quality. 4. **PNG (.png)**: Lossless compression; supports transparency, ideal for images like logos or icons. """) # Video Definition st.subheader("What is a Video?") st.markdown(""" A video is a sequence of moving images, often with sound, that creates the illusion of motion. It is used for entertainment, information, and communication, commonly in formats like MP4. """) # Video Format st.subheader("Video Format:") st.markdown(""" 1. **MP4 (.mp4)**: Widely used for videos; supports good quality and small file size. It’s compatible with most devices and platforms. """) if st.button("Image"): st.session_state['page'] = "image" if st.button("Video"): st.session_state['page'] = "video" # Initialize session state if 'page' not in st.session_state: st.session_state['page'] = "home" # Route to appropriate page if st.session_state['page'] == "home": main_page() elif st.session_state['page'] == "excel": excel_details_page() elif st.session_state['page'] == "csv": csv_details_page() elif st.session_state['page'] == "json": json_details_page() elif st.session_state['page'] == "xml": xml_details_page() elif st.session_state['page'] == "html": html_details_page() elif st.session_state['page'] == "image": image_details_page() elif st.session_state['page'] == "video": video_details_page() elif st.session_state['page'] == "OpenCV Projects": opencv_projects_page() elif st.session_state['page'] == "Image_Augmentation": Image_Augmentation_page()