Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
from tensorflow.keras.applications
|
|
|
4 |
from tensorflow.keras.preprocessing.image import img_to_array
|
5 |
from PIL import Image
|
6 |
import numpy as np
|
7 |
|
8 |
-
# Load
|
9 |
-
|
10 |
-
try:
|
11 |
-
model = tf.keras.models.load_model(MODEL_PATH)
|
12 |
-
except Exception as e:
|
13 |
-
print(f"Error loading model: {e}")
|
14 |
-
exit()
|
15 |
|
16 |
def predict_image(image):
|
17 |
"""
|
18 |
-
Process the uploaded image and return the top
|
19 |
"""
|
20 |
try:
|
21 |
# Preprocess the image
|
22 |
-
image = image.resize((
|
23 |
image_array = img_to_array(image)
|
24 |
image_array = preprocess_input(image_array) # Normalize the image
|
25 |
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
26 |
|
27 |
# Get predictions
|
28 |
predictions = model.predict(image_array)
|
29 |
-
decoded_predictions = decode_predictions(predictions, top=
|
30 |
|
31 |
-
# Format predictions as a
|
32 |
-
results =
|
33 |
-
return
|
34 |
|
35 |
except Exception as e:
|
36 |
return {"Error": str(e)}
|
@@ -39,12 +35,12 @@ def predict_image(image):
|
|
39 |
interface = gr.Interface(
|
40 |
fn=predict_image,
|
41 |
inputs=gr.Image(type="pil"), # Accepts an image input
|
42 |
-
outputs=gr.Label(num_top_classes=
|
43 |
-
title="
|
44 |
-
description="Upload an image, and the model will predict what's in the image.",
|
45 |
-
examples=["dog.jpg", "cat.jpg"], # Example images for
|
46 |
)
|
47 |
|
48 |
# Launch the Gradio app
|
49 |
if __name__ == "__main__":
|
50 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
+
from tensorflow.keras.applications import EfficientNetV2L
|
4 |
+
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input, decode_predictions
|
5 |
from tensorflow.keras.preprocessing.image import img_to_array
|
6 |
from PIL import Image
|
7 |
import numpy as np
|
8 |
|
9 |
+
# Load a stronger pretrained model (EfficientNetV2L)
|
10 |
+
model = EfficientNetV2L(weights="imagenet")
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def predict_image(image):
|
13 |
"""
|
14 |
+
Process the uploaded image and return the top 5 predictions.
|
15 |
"""
|
16 |
try:
|
17 |
# Preprocess the image
|
18 |
+
image = image.resize((480, 480)) # EfficientNetV2L expects 480x480 input
|
19 |
image_array = img_to_array(image)
|
20 |
image_array = preprocess_input(image_array) # Normalize the image
|
21 |
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
22 |
|
23 |
# Get predictions
|
24 |
predictions = model.predict(image_array)
|
25 |
+
decoded_predictions = decode_predictions(predictions, top=5)[0]
|
26 |
|
27 |
+
# Format predictions as a dictionary (label -> confidence)
|
28 |
+
results = {label: float(confidence) for _, label, confidence in decoded_predictions}
|
29 |
+
return results
|
30 |
|
31 |
except Exception as e:
|
32 |
return {"Error": str(e)}
|
|
|
35 |
interface = gr.Interface(
|
36 |
fn=predict_image,
|
37 |
inputs=gr.Image(type="pil"), # Accepts an image input
|
38 |
+
outputs=gr.Label(num_top_classes=2), # Shows top 5 predictions with confidence
|
39 |
+
title="Image Classifier",
|
40 |
+
description="Upload an image, and the model will predict what's in the image with higher accuracy.",
|
41 |
+
examples=["dog.jpg", "cat.jpg", "building.jpg", "tree.jpg"], # Example images for testing
|
42 |
)
|
43 |
|
44 |
# Launch the Gradio app
|
45 |
if __name__ == "__main__":
|
46 |
+
interface.launch()
|