Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 x-plug and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ MplugOwl model configuration """ | |
| import copy | |
| import os | |
| from typing import Union | |
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES | |
| from transformers.utils import logging | |
| from transformers.models.auto import CONFIG_MAPPING | |
| logger = logging.get_logger(__name__) | |
| MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| "MAGAer13/mplug-owl-llama-7b": "https://huggingface.co/MAGAer13/mplug-owl-llama-7b/resolve/main/config.json", | |
| # See all MplugOwl models at https://huggingface.co/models?filter=mplug_owl | |
| } | |
| class MplugOwlVisionConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate a | |
| mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
| configuration defaults will yield a similar configuration to that of the mPLUG-Owl | |
| [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| hidden_size (`int`, *optional*, defaults to 768): | |
| Dimensionality of the encoder layers and the pooler layer. | |
| intermediate_size (`int`, *optional*, defaults to 3072): | |
| Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| num_hidden_layers (`int`, *optional*, defaults to 12): | |
| Number of hidden layers in the Transformer encoder. | |
| num_attention_heads (`int`, *optional*, defaults to 12): | |
| Number of attention heads for each attention layer in the Transformer encoder. | |
| image_size (`int`, *optional*, defaults to 224): | |
| The size (resolution) of each image. | |
| patch_size (`int`, *optional*, defaults to 32): | |
| The size (resolution) of each patch. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): | |
| The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-5): | |
| The epsilon used by the layer normalization layers. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio for the attention probabilities. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| initializer_factor (`float`, *optional*, defaults to 1): | |
| A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | |
| testing). | |
| ```""" | |
| model_type = "mplug_owl_vision_model" | |
| def __init__( | |
| self, | |
| hidden_size=1024, | |
| intermediate_size=4096, | |
| projection_dim=768, | |
| num_hidden_layers=24, | |
| num_attention_heads=16, | |
| num_channels=3, | |
| image_size=224, | |
| patch_size=14, | |
| hidden_act="quick_gelu", | |
| layer_norm_eps=1e-6, | |
| attention_dropout=0.0, | |
| initializer_range=0.02, | |
| initializer_factor=1.0, | |
| use_flash_attn=False, | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.projection_dim = projection_dim | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.num_channels = num_channels | |
| self.patch_size = patch_size | |
| self.image_size = image_size | |
| self.initializer_range = initializer_range | |
| self.initializer_factor = initializer_factor | |
| self.attention_dropout = attention_dropout | |
| self.layer_norm_eps = layer_norm_eps | |
| self.hidden_act = hidden_act | |
| self.use_flash_attn = use_flash_attn | |
| def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
| config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
| # get the vision config dict if we are loading from MplugOwlConfig | |
| if config_dict.get("model_type") == "mplug-owl": | |
| config_dict = config_dict["vision_config"] | |
| if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class MplugOwlVisualAbstractorConfig(PretrainedConfig): | |
| model_type = "mplug_owl_visual_abstract" | |
| def __init__( | |
| self, | |
| hidden_size=1024, # | |
| num_hidden_layers=6, # | |
| num_attention_heads=16, # | |
| intermediate_size=4096, # | |
| attention_probs_dropout_prob=0.1, # | |
| initializer_range=0.02, | |
| layer_norm_eps=1e-6, # | |
| encoder_hidden_size=1024, # | |
| **kwargs, | |
| ): | |
| super().__init__(**kwargs) | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.attention_probs_dropout_prob = attention_probs_dropout_prob | |
| self.initializer_range = initializer_range | |
| self.layer_norm_eps = layer_norm_eps | |
| self.encoder_hidden_size = encoder_hidden_size | |
| def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
| config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
| # get the visual_abstractor config dict if we are loading from MplugOwlConfig | |
| if config_dict.get("model_type") == "mplug-owl": | |
| config_dict = config_dict["abstractor_config"] | |
| if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
| logger.warning( | |
| f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
| f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
| ) | |
| return cls.from_dict(config_dict, **kwargs) | |
| class MplugOwlConfig(PretrainedConfig): | |
| r""" | |
| [`MplugOwlConfig`] is the configuration class to store the configuration of a [`MplugOwlForConditionalGeneration`]. It is | |
| used to instantiate a mPLUG-Owl model according to the specified arguments, defining the vision model, Q-Former model | |
| and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to | |
| that of the mPLUG-Owl [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vision_config (`dict`, *optional*): | |
| Dictionary of configuration options used to initialize [`MplugOwlVisionConfig`]. | |
| visual_abstractor_config (`dict`, *optional*): | |
| Dictionary of configuration options used to initialize [`MplugOwlVisualAbstractorConfig`]. | |
| text_config (`dict`, *optional*): | |
| Dictionary of configuration options used to initialize any [`PretrainedConfig`]. | |
| num_query_tokens (`int`, *optional*, defaults to 32): | |
| The number of query tokens passed through the Transformer. | |
| kwargs (*optional*): | |
| Dictionary of keyword arguments. | |
| Example: | |
| ```python | |
| >>> from transformers import ( | |
| ... MplugOwlVisionConfig, | |
| ... MplugOwlVisualAbstractorConfig, | |
| ... OPTConfig, | |
| ... MplugOwlConfig, | |
| ... MplugOwlForConditionalGeneration, | |
| ... ) | |
| >>> # Initializing a MplugOwlConfig with x-plug/x_plug-llama-7b style configuration | |
| >>> configuration = MplugOwlConfig() | |
| >>> # Initializing a MplugOwlForConditionalGeneration (with random weights) from the x-plug/x_plug-llama-7b style configuration | |
| >>> model = MplugOwlForConditionalGeneration(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| >>> # We can also initialize a MplugOwlConfig from a MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig and any PretrainedConfig | |
| >>> # Initializing mPLUG-Owl vision, mPLUG-Owl Q-Former and language model configurations | |
| >>> vision_config = MplugOwlVisionConfig() | |
| >>> visual_abstractor_config = MplugOwlVisualAbstractorConfig() | |
| >>> text_config = OPTConfig() | |
| >>> config = MplugOwlConfig.from_text_vision_configs(vision_config, visual_abstractor_config, text_config) | |
| ```""" | |
| model_type = "mplug-owl" | |
| is_composition = True | |
| def __init__( | |
| self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs | |
| ): | |
| super().__init__(**kwargs) | |
| if vision_config is None: | |
| vision_config = MplugOwlVisionConfig().to_dict() | |
| logger.info("vision_config is None.") | |
| if visual_abstractor_config is None: | |
| visual_abstractor_config = {} | |
| logger.info("abstractor_config is None. ") | |
| if text_config is None: | |
| # we use LLAMA 7b by default | |
| from ..llama.configuration_llama import LlamaConfig | |
| text_config = LlamaConfig(pad_token_id=2).to_dict() | |
| logger.info("text_config is None.") | |
| self.vision_config = MplugOwlVisionConfig(**vision_config) | |
| self.visual_abstractor_config = MplugOwlVisualAbstractorConfig(**visual_abstractor_config) | |
| # self.visual_abstractor_config.layer_norm_eps = 1e-6 | |
| text_model_type = text_config["model_type"] if "model_type" in text_config else "llama" | |
| self.text_config = CONFIG_MAPPING[text_model_type](**text_config) | |
| self.tie_word_embeddings = self.text_config.tie_word_embeddings | |
| self.is_encoder_decoder = self.text_config.is_encoder_decoder | |
| self.num_query_tokens = num_query_tokens | |
| # self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size | |
| self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES | |
| self.initializer_factor = 1.0 | |
| self.initializer_range = 0.02 | |
| for attr in dir(self.text_config): | |
| if not hasattr(self, attr): | |
| setattr(self, attr, getattr(self.text_config, attr)) | |
| def from_vision_visual_abstractor_text_configs( | |
| cls, | |
| vision_config: MplugOwlVisionConfig, | |
| visual_abstractor_config: MplugOwlVisualAbstractorConfig, | |
| text_config: PretrainedConfig, | |
| **kwargs, | |
| ): | |
| r""" | |
| Instantiate a [`MplugOwlConfig`] (or a derived class) from a mPLUG-Owl vision model, Q-Former and language model | |
| configurations. | |
| Returns: | |
| [`MplugOwlConfig`]: An instance of a configuration object | |
| """ | |
| return cls( | |
| vision_config=vision_config.to_dict(), | |
| visual_abstractor_config=visual_abstractor_config.to_dict(), | |
| text_config=text_config.to_dict(), | |
| **kwargs, | |
| ) | |
| def to_dict(self): | |
| """ | |
| Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | |
| Returns: | |
| `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | |
| """ | |
| output = copy.deepcopy(self.__dict__) | |
| output["vision_config"] = self.vision_config.to_dict() | |
| output["visual_abstractor_config"] = self.visual_abstractor_config.to_dict() | |
| output["text_config"] = self.text_config.to_dict() | |
| output["model_type"] = self.__class__.model_type | |
| return output | |