File size: 10,172 Bytes
a1687ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This implementation refers to: https://github.com/facebookresearch/segment-anything

import os
import sys
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), ".."))

import time
import cv2  # type: ignore
import argparse
import numpy as np  # type: ignore
import paddle

from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
from paddleseg.utils.visualize import get_pseudo_color_map, get_color_map_list

ID_PHOTO_IMAGE_DEMO = "examples/cityscapes_demo.png"
CACHE_DIR = ".temp"

model_link = {
    'vit_h':
    "https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_h/model.pdparams",
    'vit_l':
    "https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_l/model.pdparams",
    'vit_b':
    "https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_b/model.pdparams",
    'vit_t':
    "https://paddleseg.bj.bcebos.com/dygraph/paddlesegAnything/vit_t/model.pdparam"
}

parser = argparse.ArgumentParser(description=(
    "Runs automatic mask generation on an input image or directory of images, "
    "and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
    "as well as pycocotools if saving in RLE format."))

parser.add_argument(
    "--model-type",
    type=str,
    default="vit_l",
    required=True,
    help="The type of model to load, in ['vit_h', 'vit_l', 'vit_b', 'vit_t']", )

parser.add_argument(
    "--convert-to-rle",
    action="store_true",
    help=(
        "Save masks as COCO RLEs in a single json instead of as a folder of PNGs. "
        "Requires pycocotools."), )

amg_settings = parser.add_argument_group("AMG Settings")

amg_settings.add_argument(
    "--points-per-side",
    type=int,
    default=None,
    help="Generate masks by sampling a grid over the image with this many points to a side.",
)

amg_settings.add_argument(
    "--points-per-batch",
    type=int,
    default=None,
    help="How many input points to process simultaneously in one batch.", )

amg_settings.add_argument(
    "--pred-iou-thresh",
    type=float,
    default=None,
    help="Exclude masks with a predicted score from the model that is lower than this threshold.",
)

amg_settings.add_argument(
    "--stability-score-thresh",
    type=float,
    default=None,
    help="Exclude masks with a stability score lower than this threshold.", )

amg_settings.add_argument(
    "--stability-score-offset",
    type=float,
    default=None,
    help="Larger values perturb the mask more when measuring stability score.",
)

amg_settings.add_argument(
    "--box-nms-thresh",
    type=float,
    default=None,
    help="The overlap threshold for excluding a duplicate mask.", )

amg_settings.add_argument(
    "--crop-n-layers",
    type=int,
    default=None,
    help=(
        "If >0, mask generation is run on smaller crops of the image to generate more masks. "
        "The value sets how many different scales to crop at."), )

amg_settings.add_argument(
    "--crop-nms-thresh",
    type=float,
    default=None,
    help="The overlap threshold for excluding duplicate masks across different crops.",
)

amg_settings.add_argument(
    "--crop-overlap-ratio",
    type=int,
    default=None,
    help="Larger numbers mean image crops will overlap more.", )

amg_settings.add_argument(
    "--crop-n-points-downscale-factor",
    type=int,
    default=None,
    help="The number of points-per-side in each layer of crop is reduced by this factor.",
)

amg_settings.add_argument(
    "--min-mask-region-area",
    type=int,
    default=None,
    help=(
        "Disconnected mask regions or holes with area smaller than this value "
        "in pixels are removed by postprocessing."), )


def get_amg_kwargs(args):
    amg_kwargs = {
        "points_per_side": args.points_per_side,
        "points_per_batch": args.points_per_batch,
        "pred_iou_thresh": args.pred_iou_thresh,
        "stability_score_thresh": args.stability_score_thresh,
        "stability_score_offset": args.stability_score_offset,
        "box_nms_thresh": args.box_nms_thresh,
        "crop_n_layers": args.crop_n_layers,
        "crop_nms_thresh": args.crop_nms_thresh,
        "crop_overlap_ratio": args.crop_overlap_ratio,
        "crop_n_points_downscale_factor": args.crop_n_points_downscale_factor,
        "min_mask_region_area": args.min_mask_region_area,
    }
    amg_kwargs = {k: v for k, v in amg_kwargs.items() if v is not None}
    return amg_kwargs


def delete_result():
    """clear old result in `.temp`"""
    results = sorted(os.listdir(CACHE_DIR))
    for res in results:
        if int(time.time()) - int(os.path.splitext(res)[0]) > 10000:
            os.remove(os.path.join(CACHE_DIR, res))


def download(img):
    if not os.path.exists(CACHE_DIR):
        os.makedirs(CACHE_DIR)
    while True:
        name = str(int(time.time()))
        tmp_name = os.path.join(CACHE_DIR, name + '.jpg')
        if not os.path.exists(tmp_name):
            break
        else:
            time.sleep(1)

    img.save(tmp_name, 'png')
    return tmp_name


def masks2pseudomap(masks):
    result = np.ones(masks[0]["segmentation"].shape, dtype=np.uint8) * 255
    for i, mask_data in enumerate(masks):
        result[mask_data["segmentation"] == 1] = i + 1
    pred_result = result
    result = get_pseudo_color_map(result)

    return pred_result, result


def visualize(image, result, color_map, weight=0.6):
    """
    Convert predict result to color image, and save added image.

    Args:
        image (str): The path of origin image.
        result (np.ndarray): The predict result of image.
        color_map (list): The color used to save the prediction results.
        save_dir (str): The directory for saving visual image. Default: None.
        weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6

    Returns:
        vis_result (np.ndarray): If `save_dir` is None, return the visualized result.
    """

    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
    c1 = cv2.LUT(result, color_map[:, 0])
    c2 = cv2.LUT(result, color_map[:, 1])
    c3 = cv2.LUT(result, color_map[:, 2])
    pseudo_img = np.dstack((c3, c2, c1))

    # im = cv2.imread(image)
    vis_result = cv2.addWeighted(image, weight, pseudo_img, 1 - weight, 0)
    return vis_result


def gradio_display(generator):
    import gradio as gr

    def clear_image_all():
        delete_result()
        return None, None, None, None

    def get_id_photo_output(img):
        """
        Get the special size and background photo.

        Args:
            img(numpy:ndarray): The image array.
            size(str): The size user specified.
            bg(str): The background color user specified.
            download_size(str): The size for image saving.

        """
        predictor = generator
        masks = predictor.generate(img)
        pred_result, pseudo_map = masks2pseudomap(masks)  # PIL Image
        added_pseudo_map = visualize(
            img, pred_result, color_map=get_color_map_list(256))
        res_download = download(pseudo_map)

        return pseudo_map, added_pseudo_map, res_download

    with gr.Blocks() as demo:
        gr.Markdown("""# Segment Anything (PaddleSeg) """)
        with gr.Tab("InputImage"):
            image_in = gr.Image(value=ID_PHOTO_IMAGE_DEMO, label="Input image")

            with gr.Row():
                image_clear_btn = gr.Button("Clear")
                image_submit_btn = gr.Button("Submit")

            with gr.Row():
                img_out1 = gr.Image(
                    label="Output image", interactive=False).style(height=300)
                img_out2 = gr.Image(
                    label="Output image with mask",
                    interactive=False).style(height=300)
            downloaded_img = gr.File(label='Image download').style(height=50)

        image_clear_btn.click(
            fn=clear_image_all,
            inputs=None,
            outputs=[image_in, img_out1, img_out2, downloaded_img])

        image_submit_btn.click(
            fn=get_id_photo_output,
            inputs=[image_in, ],
            outputs=[img_out1, img_out2, downloaded_img])

        gr.Markdown(
            """<font color=Gray>Tips: You can try segment the default image OR upload any images you want to segment by click on the clear button first.</font>"""
        )

        gr.Markdown(
            """<font color=Gray>This is Segment Anything build with PaddlePaddle. 
            We refer to the [SAM](https://github.com/facebookresearch/segment-anything) for code strucure and model architecture.
            If you have any question or feature request, welcome to raise issues on [GitHub](https://github.com/PaddlePaddle/PaddleSeg/issues). </font>"""
        )

        gr.Button.style(1)

    demo.launch(server_name="0.0.0.0", server_port=8017, share=True)


def main(args: argparse.Namespace) -> None:
    print("Loading model...")

    sam = sam_model_registry[args.model_type](
        checkpoint=model_link[args.model_type])
    if paddle.is_compiled_with_cuda():
        paddle.set_device("gpu")
    else:
        paddle.set_device("cpu")
    output_mode = "coco_rle" if args.convert_to_rle else "binary_mask"
    amg_kwargs = get_amg_kwargs(args)
    generator = SamAutomaticMaskGenerator(
        sam, output_mode=output_mode, **amg_kwargs)

    gradio_display(generator)


if __name__ == "__main__":
    args = parser.parse_args()
    main(args)