File size: 8,675 Bytes
a1687ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import cv2
import time
import sys
import argparse
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), ".."))

import paddle
import paddle.nn.functional as F
import numpy as np
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt

from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
from segment_anything.modeling.clip_paddle import build_clip_model, _transform
from segment_anything.utils.sample_tokenizer import tokenize
from paddleseg.utils.visualize import get_pseudo_color_map, get_color_map_list

ID_PHOTO_IMAGE_DEMO = "./examples/cityscapes_demo.png"
CACHE_DIR = ".temp"
model_link = {
    'vit_h':
    "https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_h/model.pdparams",
    'vit_l':
    "https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_l/model.pdparams",
    'vit_b':
    "https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_b/model.pdparams",
    'vit_t':
    "https://paddleseg.bj.bcebos.com/dygraph/paddlesegAnything/vit_t/model.pdparam",
    'clip_b_32':
    "https://bj.bcebos.com/paddleseg/dygraph/clip/vit_b_32_pretrain/clip_vit_b_32.pdparams"
}

parser = argparse.ArgumentParser(description=(
    "Runs automatic mask generation on an input image or directory of images, "
    "and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
    "as well as pycocotools if saving in RLE format."))

parser.add_argument(
    "--model-type",
    type=str,
    default="vit_h",
    required=True,
    help="The type of model to load, in ['vit_h', 'vit_l', 'vit_b', 'vit_t']", )


def download(img):
    if not os.path.exists(CACHE_DIR):
        os.makedirs(CACHE_DIR)
    while True:
        name = str(int(time.time()))
        tmp_name = os.path.join(CACHE_DIR, name + '.jpg')
        if not os.path.exists(tmp_name):
            break
        else:
            time.sleep(1)
    img.save(tmp_name, 'png')
    return tmp_name


def segment_image(image, segment_mask):
    image_array = np.array(image)
    gray_image = Image.new("RGB", image.size, (128, 128, 128))
    segmented_image_array = np.zeros_like(image_array)
    segmented_image_array[segment_mask] = image_array[segment_mask]
    segmented_image = Image.fromarray(segmented_image_array)
    transparency = np.zeros_like(segment_mask, dtype=np.uint8)
    transparency[segment_mask] = 255
    transparency_image = Image.fromarray(transparency, mode='L')
    gray_image.paste(segmented_image, mask=transparency_image)
    return gray_image


def image_text_match(cropped_objects, text_query):
    transformed_images = [transform(image) for image in cropped_objects]
    tokenized_text = tokenize([text_query])
    batch_images = paddle.stack(transformed_images)
    image_features = model.encode_image(batch_images)
    print("encode_image done!")
    text_features = model.encode_text(tokenized_text)
    print("encode_text done!")
    image_features /= image_features.norm(axis=-1, keepdim=True)
    text_features /= text_features.norm(axis=-1, keepdim=True)
    if len(text_features.shape) == 3:
        text_features = text_features.squeeze(0)
    probs = 100. * image_features @text_features.T
    return F.softmax(probs[:, 0], axis=0)


def masks2pseudomap(masks):
    result = np.ones(masks[0]["segmentation"].shape, dtype=np.uint8) * 255
    for i, mask_data in enumerate(masks):
        result[mask_data["segmentation"] == 1] = i + 1
    pred_result = result
    result = get_pseudo_color_map(result)
    return pred_result, result


def visualize(image, result, color_map, weight=0.6):
    """
    Convert predict result to color image, and save added image.

    Args:
        image (str): The path of origin image.
        result (np.ndarray): The predict result of image.
        color_map (list): The color used to save the prediction results.
        save_dir (str): The directory for saving visual image. Default: None.
        weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6

    Returns:
        vis_result (np.ndarray): If `save_dir` is None, return the visualized result.
    """

    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
    c1 = cv2.LUT(result, color_map[:, 0])
    c2 = cv2.LUT(result, color_map[:, 1])
    c3 = cv2.LUT(result, color_map[:, 2])
    pseudo_img = np.dstack((c3, c2, c1))

    vis_result = cv2.addWeighted(image, weight, pseudo_img, 1 - weight, 0)
    return vis_result


def get_id_photo_output(image, text):
    """
    Get the special size and background photo.

    Args:
        img(numpy:ndarray): The image array.
        size(str): The size user specified.
        bg(str): The background color user specified.
        download_size(str): The size for image saving.

    """
    image_ori = image.copy()
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    masks = mask_generator.generate(image)
    pred_result, pseudo_map = masks2pseudomap(masks)  # PIL Image
    added_pseudo_map = visualize(
        image, pred_result, color_map=get_color_map_list(256))
    cropped_objects = []
    image_pil = Image.fromarray(image)
    for mask in masks:
        bbox = [
            mask["bbox"][0], mask["bbox"][1], mask["bbox"][0] + mask["bbox"][2],
            mask["bbox"][1] + mask["bbox"][3]
        ]
        cropped_objects.append(
            segment_image(image_pil, mask["segmentation"]).crop(bbox))

    scores = image_text_match(cropped_objects, str(text))
    text_matching_masks = []
    for idx, score in enumerate(scores):
        if score < 0.05:
            continue
        text_matching_mask = Image.fromarray(
            masks[idx]["segmentation"].astype('uint8') * 255)
        text_matching_masks.append(text_matching_mask)

    image_pil_ori = Image.fromarray(image_ori)
    alpha_image = Image.new('RGBA', image_pil_ori.size, (0, 0, 0, 0))
    alpha_color = (255, 0, 0, 180)

    draw = ImageDraw.Draw(alpha_image)
    for text_matching_mask in text_matching_masks:
        draw.bitmap((0, 0), text_matching_mask, fill=alpha_color)

    result_image = Image.alpha_composite(
        image_pil_ori.convert('RGBA'), alpha_image)
    res_download = download(result_image)
    return result_image, added_pseudo_map, res_download


def gradio_display():
    import gradio as gr
    examples_sam = [["./examples/cityscapes_demo.png", "a photo of car"],
                    ["examples/dog.jpg", "dog"],
                    ["examples/zixingche.jpeg", "kid"]]

    demo_mask_sam = gr.Interface(
        fn=get_id_photo_output,
        inputs=[
            gr.Image(label="Input image", height=400),
            gr.Textbox(label="Input text prompt", value="a car"),
        ],
        outputs=[
            gr.Image(label="Output based on text", height=300),
            gr.Image(label="Output mask", height=300)
        ],
        examples=examples_sam,
        description="<p> \
                        <strong>SAM+CLIP:  Text prompt for segmentation. </strong> <br>\
                        Choose an example below; Or, upload by yourself: <br>\
                        1. Upload images to be tested to 'input image'. 2. Input a text prompt to 'input text prompt' and click 'submit'</strong>.  <br>\
                        </p>",
        cache_examples=False,
        flagging_mode="never"
    )

    demo = gr.TabbedInterface(
        [demo_mask_sam],
        ['SAM+CLIP(Text to Segment)'],
        title=" 🔥 Text to Segment Anything with PaddleSeg 🔥"
    )
    
    demo.launch(
        server_name="0.0.0.0",
        server_port=8078,
        share=True
    )

args = parser.parse_args()
print("Loading model...")

if paddle.is_compiled_with_cuda():
    paddle.set_device("gpu")
else:
    paddle.set_device("cpu")

sam = sam_model_registry[args.model_type](
    checkpoint=model_link[args.model_type])
mask_generator = SamAutomaticMaskGenerator(sam)

model, transform = build_clip_model(model_link["clip_b_32"])
gradio_display()