Spaces:
Runtime error
Runtime error
File size: 8,675 Bytes
a1687ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import cv2
import time
import sys
import argparse
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), ".."))
import paddle
import paddle.nn.functional as F
import numpy as np
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator
from segment_anything.modeling.clip_paddle import build_clip_model, _transform
from segment_anything.utils.sample_tokenizer import tokenize
from paddleseg.utils.visualize import get_pseudo_color_map, get_color_map_list
ID_PHOTO_IMAGE_DEMO = "./examples/cityscapes_demo.png"
CACHE_DIR = ".temp"
model_link = {
'vit_h':
"https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_h/model.pdparams",
'vit_l':
"https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_l/model.pdparams",
'vit_b':
"https://bj.bcebos.com/paddleseg/dygraph/paddlesegAnything/vit_b/model.pdparams",
'vit_t':
"https://paddleseg.bj.bcebos.com/dygraph/paddlesegAnything/vit_t/model.pdparam",
'clip_b_32':
"https://bj.bcebos.com/paddleseg/dygraph/clip/vit_b_32_pretrain/clip_vit_b_32.pdparams"
}
parser = argparse.ArgumentParser(description=(
"Runs automatic mask generation on an input image or directory of images, "
"and outputs masks as either PNGs or COCO-style RLEs. Requires open-cv, "
"as well as pycocotools if saving in RLE format."))
parser.add_argument(
"--model-type",
type=str,
default="vit_h",
required=True,
help="The type of model to load, in ['vit_h', 'vit_l', 'vit_b', 'vit_t']", )
def download(img):
if not os.path.exists(CACHE_DIR):
os.makedirs(CACHE_DIR)
while True:
name = str(int(time.time()))
tmp_name = os.path.join(CACHE_DIR, name + '.jpg')
if not os.path.exists(tmp_name):
break
else:
time.sleep(1)
img.save(tmp_name, 'png')
return tmp_name
def segment_image(image, segment_mask):
image_array = np.array(image)
gray_image = Image.new("RGB", image.size, (128, 128, 128))
segmented_image_array = np.zeros_like(image_array)
segmented_image_array[segment_mask] = image_array[segment_mask]
segmented_image = Image.fromarray(segmented_image_array)
transparency = np.zeros_like(segment_mask, dtype=np.uint8)
transparency[segment_mask] = 255
transparency_image = Image.fromarray(transparency, mode='L')
gray_image.paste(segmented_image, mask=transparency_image)
return gray_image
def image_text_match(cropped_objects, text_query):
transformed_images = [transform(image) for image in cropped_objects]
tokenized_text = tokenize([text_query])
batch_images = paddle.stack(transformed_images)
image_features = model.encode_image(batch_images)
print("encode_image done!")
text_features = model.encode_text(tokenized_text)
print("encode_text done!")
image_features /= image_features.norm(axis=-1, keepdim=True)
text_features /= text_features.norm(axis=-1, keepdim=True)
if len(text_features.shape) == 3:
text_features = text_features.squeeze(0)
probs = 100. * image_features @text_features.T
return F.softmax(probs[:, 0], axis=0)
def masks2pseudomap(masks):
result = np.ones(masks[0]["segmentation"].shape, dtype=np.uint8) * 255
for i, mask_data in enumerate(masks):
result[mask_data["segmentation"] == 1] = i + 1
pred_result = result
result = get_pseudo_color_map(result)
return pred_result, result
def visualize(image, result, color_map, weight=0.6):
"""
Convert predict result to color image, and save added image.
Args:
image (str): The path of origin image.
result (np.ndarray): The predict result of image.
color_map (list): The color used to save the prediction results.
save_dir (str): The directory for saving visual image. Default: None.
weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6
Returns:
vis_result (np.ndarray): If `save_dir` is None, return the visualized result.
"""
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
color_map = np.array(color_map).astype("uint8")
# Use OpenCV LUT for color mapping
c1 = cv2.LUT(result, color_map[:, 0])
c2 = cv2.LUT(result, color_map[:, 1])
c3 = cv2.LUT(result, color_map[:, 2])
pseudo_img = np.dstack((c3, c2, c1))
vis_result = cv2.addWeighted(image, weight, pseudo_img, 1 - weight, 0)
return vis_result
def get_id_photo_output(image, text):
"""
Get the special size and background photo.
Args:
img(numpy:ndarray): The image array.
size(str): The size user specified.
bg(str): The background color user specified.
download_size(str): The size for image saving.
"""
image_ori = image.copy()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
masks = mask_generator.generate(image)
pred_result, pseudo_map = masks2pseudomap(masks) # PIL Image
added_pseudo_map = visualize(
image, pred_result, color_map=get_color_map_list(256))
cropped_objects = []
image_pil = Image.fromarray(image)
for mask in masks:
bbox = [
mask["bbox"][0], mask["bbox"][1], mask["bbox"][0] + mask["bbox"][2],
mask["bbox"][1] + mask["bbox"][3]
]
cropped_objects.append(
segment_image(image_pil, mask["segmentation"]).crop(bbox))
scores = image_text_match(cropped_objects, str(text))
text_matching_masks = []
for idx, score in enumerate(scores):
if score < 0.05:
continue
text_matching_mask = Image.fromarray(
masks[idx]["segmentation"].astype('uint8') * 255)
text_matching_masks.append(text_matching_mask)
image_pil_ori = Image.fromarray(image_ori)
alpha_image = Image.new('RGBA', image_pil_ori.size, (0, 0, 0, 0))
alpha_color = (255, 0, 0, 180)
draw = ImageDraw.Draw(alpha_image)
for text_matching_mask in text_matching_masks:
draw.bitmap((0, 0), text_matching_mask, fill=alpha_color)
result_image = Image.alpha_composite(
image_pil_ori.convert('RGBA'), alpha_image)
res_download = download(result_image)
return result_image, added_pseudo_map, res_download
def gradio_display():
import gradio as gr
examples_sam = [["./examples/cityscapes_demo.png", "a photo of car"],
["examples/dog.jpg", "dog"],
["examples/zixingche.jpeg", "kid"]]
demo_mask_sam = gr.Interface(
fn=get_id_photo_output,
inputs=[
gr.Image(label="Input image", height=400),
gr.Textbox(label="Input text prompt", value="a car"),
],
outputs=[
gr.Image(label="Output based on text", height=300),
gr.Image(label="Output mask", height=300)
],
examples=examples_sam,
description="<p> \
<strong>SAM+CLIP: Text prompt for segmentation. </strong> <br>\
Choose an example below; Or, upload by yourself: <br>\
1. Upload images to be tested to 'input image'. 2. Input a text prompt to 'input text prompt' and click 'submit'</strong>. <br>\
</p>",
cache_examples=False,
flagging_mode="never"
)
demo = gr.TabbedInterface(
[demo_mask_sam],
['SAM+CLIP(Text to Segment)'],
title=" 🔥 Text to Segment Anything with PaddleSeg 🔥"
)
demo.launch(
server_name="0.0.0.0",
server_port=8078,
share=True
)
args = parser.parse_args()
print("Loading model...")
if paddle.is_compiled_with_cuda():
paddle.set_device("gpu")
else:
paddle.set_device("cpu")
sam = sam_model_registry[args.model_type](
checkpoint=model_link[args.model_type])
mask_generator = SamAutomaticMaskGenerator(sam)
model, transform = build_clip_model(model_link["clip_b_32"])
gradio_display()
|