Spaces:
Running
Running
File size: 18,656 Bytes
a6576f0 e3f9537 a6576f0 3930884 9bf6e5a e081b6d 9bf6e5a a6576f0 ba6928c a6576f0 ba6928c e3f9537 ba6928c a6576f0 e3f9537 a6576f0 e3f9537 a6576f0 ba6928c a6576f0 ba6928c a6576f0 ba6928c a6576f0 e3f9537 a6576f0 e3f9537 a6576f0 e3f9537 a6576f0 e3f9537 ba6928c e3f9537 a6576f0 ba6928c a6576f0 e3f9537 ba6928c e3f9537 9adea2d e3f9537 ba6928c e3f9537 9adea2d e3f9537 9adea2d a6576f0 9adea2d a6576f0 e3f9537 a6576f0 807b3db a6576f0 0bd935c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import streamlit as st
import pandas as pd
import numpy as np
import altair as alt
import yaml
from pathlib import Path
# Call page config BEFORE importing modules that use Streamlit commands
st.set_page_config(page_title="Reddit Sentiment Trends", layout="wide")
# Import from local modules AFTER page config is set
from data_utils import (
load_summary,
load_day,
get_subreddit_colors,
get_last_updated_hf_caption,
)
from text_analysis import keywords_for_df
st.title("Reddit Sentiment Monitor")
st.markdown(
"""
**Welcome!** This page shows how Reddit's AI communities feel day-to-day.
A daily pipeline grabs new posts and comments, scores their tone with a sentiment model, and saves the results to a public HuggingFace [dataset](https://huggingface.co/datasets/hblim/top_reddit_posts_daily). \n
"""
)
# ββ Load & transform data ββββββββββββββββββββββββββββββββββββββββββββββββββββ
df = load_summary()
last_update_caption = get_last_updated_hf_caption()
# Get colors for each subreddit
subreddits = df["subreddit"].unique()
subreddit_colors = get_subreddit_colors(subreddits)
# Load mean/std parameters for sentiment spike bands per subreddit
params_path = Path(__file__).resolve().parent.parent / "spike_params.yaml"
try:
with params_path.open("r") as f:
spike_params = yaml.safe_load(f)
except FileNotFoundError:
spike_params = {}
# Define time format to use across all charts
time_format = "%m/%d/%Y"
# Get date range from the dataset for the form
min_date = df["date"].min().date()
max_date = df["date"].max().date()
# ββ Community weighted sentiment line chart for all subreddits βββββββββββββββ
st.subheader("Daily Community-Weighted Sentiment")
st.markdown(
"""
The line chart below plots the daily *community-weighted sentiment*, reflecting the average sentiment across all posts/comments in a subreddit community.
To calculate the community-weighted sentiment:
- First, each post or comment is assigned a sentiment score of β1 (negative) or +1 (positive)
- Then, the sentiment score is weighted by its upvotes so busier discussions matter more.
"""
)
# Add date range selector for the time series
date_range = st.date_input(
"Select date range for time series",
(min_date, max_date),
min_value=min_date,
max_value=max_date
)
start_date, end_date = date_range
filtered_df = df[(df["date"].dt.date >= start_date) & (df["date"].dt.date <= end_date)]
# Add a dropdown (selectbox) for choosing a single subreddit to display
default_sub = "artificial" if "artificial" in subreddits else list(subreddits)[0]
selected_subreddit = st.selectbox(
"Select subreddit",
options=list(subreddits),
index=list(subreddits).index(default_sub)
)
plot_df = filtered_df[filtered_df["subreddit"] == selected_subreddit]
# ββ Determine shading band and dynamic y-axis domain ββββββββββββββββββββββββ
mean_val = std_val = None
if selected_subreddit in spike_params:
mean_val = spike_params[selected_subreddit].get("mean")
std_val = spike_params[selected_subreddit].get("std")
# Calculate band limits if parameters exist
band_low = band_high = None
if mean_val is not None and std_val is not None:
band_low = mean_val - 3 * std_val
band_high = mean_val + 3 * std_val
# Determine y-axis domain based on data and (optional) band
sent_min = plot_df["community_weighted_sentiment"].min()
sent_max = plot_df["community_weighted_sentiment"].max()
if band_low is not None:
y_min = float(min(sent_min, band_low))
y_max = float(max(sent_max, band_high))
else:
y_min = float(sent_min)
y_max = float(sent_max)
# Add small padding so points are not flush with edges
padding = 0.05
y_domain = [y_min - padding, y_max + padding]
# Define hover selection for nearest point
nearest = alt.selection_single(
name="nearest",
on="mouseover",
nearest=True,
fields=["date"],
empty="none"
)
# Base chart with refreshed y-axis range
base = alt.Chart(plot_df).encode(
x=alt.X("date:T", title="Date", axis=alt.Axis(format=time_format, labelPadding=15)),
y=alt.Y(
"community_weighted_sentiment:Q",
title="Community Weighted Sentiment",
scale=alt.Scale(domain=y_domain),
),
)
# Use a constant blue colour for all plot elements
line_colour = "#1f77b4"
# Draw line for the selected subreddit
line = (
base.transform_calculate(legend='"daily community sentiment score"')
.mark_line(color=line_colour)
.encode(
color=alt.Color(
"legend:N",
scale=alt.Scale(domain=["daily community sentiment score", "historical 3Ο sentiment range", "significant sentiment outlier"], range=[line_colour, line_colour, "red"]),
legend=None # hide default legend; we will add a custom manual legend below the chart
)
)
)
# Invisible selectors to capture hover events
selectors = base.mark_point(opacity=0).add_selection(nearest)
# Draw highlighted points on hover
points_hover = base.mark_point(size=60, color=line_colour).encode(
opacity=alt.condition(nearest, alt.value(1), alt.value(0))
)
# Tooltip rule and popup
tooltips = base.mark_rule(color="gray").encode(
tooltip=[
alt.Tooltip("subreddit:N", title="Subreddit"),
alt.Tooltip("date:T", title="Date", format=time_format),
alt.Tooltip("community_weighted_sentiment:Q", title="Sentiment", format=".2f")
]
).transform_filter(nearest)
# Optional shaded band (mean Β± 3Ο)
band = None
outliers = None
domain_labels = [
"daily community sentiment score",
"historical 3Ο sentiment range",
"significant sentiment outlier",
]
domain_colors = [line_colour, line_colour, "red"]
if band_low is not None:
band_df = pd.DataFrame({
"date": [plot_df["date"].min(), plot_df["date"].max()],
"low": [band_low, band_low],
"high": [band_high, band_high],
})
band = (
alt.Chart(band_df)
.transform_calculate(legend='"historical 3Ο sentiment range"')
.mark_area(opacity=0.15)
.encode(
x="date:T",
y=alt.Y("low:Q", scale=alt.Scale(domain=y_domain)),
y2="high:Q",
color=alt.Color(
"legend:N",
scale=alt.Scale(domain=domain_labels, range=domain_colors),
legend=None # suppress built-in legend for band
),
)
)
# Identify significant outliers outside the band
outlier_df = plot_df[(plot_df["community_weighted_sentiment"] < band_low) |
(plot_df["community_weighted_sentiment"] > band_high)].copy()
if not outlier_df.empty:
outliers = (
alt.Chart(outlier_df)
.transform_calculate(legend='"significant sentiment outlier"')
.mark_point(shape="circle", size=100, fill="white", stroke="red", strokeWidth=2)
.encode(
x="date:T",
y="community_weighted_sentiment:Q",
color=alt.Color(
"legend:N",
scale=alt.Scale(domain=domain_labels, range=domain_colors),
legend=None # suppress built-in legend for outlier
),
)
)
# Layer everything and make interactive, with title showing subreddit
layers = [line, selectors, points_hover, tooltips]
if band is not None:
layers.insert(0, band) # draw band behind the line
if outliers is not None:
layers.append(outliers)
hover_chart = alt.layer(*layers).properties(
height=400, # increased height for more spacious plot area
).interactive(bind_y=False)
# ββ Manual legend (two rows) βββββββββββββββββββββββββββββββββββββββββββββββ
legend_df = pd.DataFrame({
"row": [0, 1],
"label": ["significant sentiment outlier", "historical 3Ο sentiment range"],
"stroke": ["red", "lightblue"], # outline colour
"fill": ["white", "lightblue"], # interior fill (blue only for historical band)
"shape": ["circle", "square"],
})
legend_points = (
alt.Chart(legend_df)
.mark_point(size=100, filled=True)
.encode(
y=alt.Y("row:O", axis=None),
x=alt.value(0),
shape=alt.Shape("shape:N", legend=None),
stroke=alt.Stroke("stroke:N", scale=None, legend=None),
fill=alt.Fill("fill:N", scale=None, legend=None),
)
)
legend_text = (
alt.Chart(legend_df)
.mark_text(align="left", baseline="middle", dx=15, color="black")
.encode(
y="row:O",
x=alt.value(0),
text="label:N",
)
)
manual_legend = (
legend_points + legend_text
).properties(height=50, background="white",width=170)
# # Concatenate chart and manual legend vertically
# final_chart = alt.vconcat(
# manual_legend,
# hover_chart,
# spacing=0
# ).configure_view(strokeWidth=0)
st.altair_chart(manual_legend, use_container_width=False)
st.altair_chart(hover_chart, use_container_width=True)
# ββ Bar chart for post counts by subreddit (side-by-side) ββββββββββββββββββββ
st.subheader("Daily Post Counts by Subreddit")
# Create grouped bar chart for post counts by date and subreddit
bar_chart = alt.Chart(df).mark_bar().encode(
x=alt.X("date:T", title="Date", axis=alt.Axis(format=time_format)),
y=alt.Y("count:Q", title="Post Count"),
xOffset="subreddit:N", # This creates the side-by-side grouping
color=alt.Color(
"subreddit:N",
scale=alt.Scale(domain=list(subreddits), range=list(subreddit_colors.values())),
legend=alt.Legend(title="Subreddit")
),
tooltip=["date", "subreddit", "count"]
).properties(height=400).interactive()
st.altair_chart(bar_chart, use_container_width=True)
# ββ Latest metrics for each subreddit βββββββββββββββββββββββββββββββββββββββββ
st.subheader("Latest Metrics")
# Get the most recent data for each subreddit
latest_by_subreddit = df.sort_values("date").groupby("subreddit").last().reset_index()
# Display metrics in columns
cols = st.columns(len(latest_by_subreddit))
for i, (_, row) in enumerate(latest_by_subreddit.iterrows()):
with cols[i]:
st.markdown(f"**{row['subreddit']}**")
st.metric("Community Weighted", f"{row['community_weighted_sentiment']:.2f}")
st.metric("Posts", int(row["count"]))
# ββ Analyze sentiment driving posts βββββββββββββββββββββββββββββββββββββ
st.header("Analyze sentiment driving posts")
with st.form("analysis_form"):
col1, col2 = st.columns(2)
with col1:
selected_subreddit = st.selectbox("Select Subreddit", options=subreddits)
with col2:
selected_date = st.date_input(
"Select Date",
value=max_date,
min_value=min_date,
max_value=max_date
)
submit_button = st.form_submit_button("Analyze Posts")
if submit_button:
date_str = selected_date.strftime("%Y-%m-%d")
with st.spinner(f"Loading data for r/{selected_subreddit} on {date_str}..."):
posts_df = load_day(date_str, selected_subreddit)
if posts_df.empty:
st.error(f"No posts found for r/{selected_subreddit} on {date_str}")
else:
# Separate posts and comments
posts = posts_df[posts_df["type"] == "post"]
comments = posts_df[posts_df["type"] == "comment"]
# Overall summary metrics using engagement-adjusted sentiment (EAS)
n_posts = len(posts)
df_day = posts_df.copy()
df_day["score_num"] = pd.to_numeric(df_day["score"], errors="coerce").fillna(0)
weights_base_day = 1 + np.log1p(df_day["score_num"].clip(lower=0))
gamma_post = 0.3
weights_day = weights_base_day * np.where(df_day["type"] == "post", gamma_post, 1.0)
total_weight_day = weights_day.sum()
overall_eas = (weights_day * df_day["sentiment"]).sum() / weights_day.sum() if weights_day.sum() > 0 else 0
# Normalize daily weighted sentiment to range [-1,1]
overall_eas = 2 * overall_eas - 1
overall_score = df_day["score"].sum()
st.subheader(f"r/{selected_subreddit} on {date_str}")
c1, c2, c3 = st.columns(3)
c1.metric("Posts", n_posts)
c2.metric("Daily Weighted Sentiment, All Posts", f"{overall_eas:.2f}")
c3.metric("Total Score, All Posts", f"{overall_score:,}")
# Wrap analysis and rendering of top posts in a spinner
with st.spinner("Analyzing sentiment and rendering top posts..."):
# Build per-post analysis
analysis_rows = []
for _, post in posts.iterrows():
pid = post["post_id"]
text = post["text"]
# Gather comments for this post
post_comments = comments[comments["parent_id"] == f"t3_{pid}"]
# Combine post and comments for calculations
segment = pd.concat([pd.DataFrame([post]), post_comments], ignore_index=True)
# Compute engagement-adjusted sentiment for this post thread
segment_score_num = pd.to_numeric(segment["score"], errors="coerce").fillna(0)
weights_base = 1 + np.log1p(segment_score_num.clip(lower=0))
gamma_post = 0.3
weights_seg = weights_base * np.where(segment["type"] == "post", gamma_post, 1.0)
ws = (weights_seg * segment["sentiment"]).sum() / weights_seg.sum() if weights_seg.sum() > 0 else 0
# Normalize weighted sentiment of thread to range [-1,1]
ws = 2 * ws - 1
ts = segment["score"].sum()
nc = len(post_comments)
thread_weight_sum = weights_seg.sum()
contrib_weight = thread_weight_sum / total_weight_day if total_weight_day > 0 else 0
total_contribution = contrib_weight * ws
analysis_rows.append({
"post_id": pid,
"Post Keywords": "", # placeholder; will compute for top posts only
"Weighted Sentiment of Thread": ws,
"Contribution Weight": contrib_weight,
"Total Sentiment Contribution": total_contribution,
"# Comments": nc,
"Total Score": ts
})
analysis_df = pd.DataFrame(analysis_rows)
# Determine top 5 posts by contribution weight
top5 = analysis_df.sort_values("Contribution Weight", ascending=False).head(5).copy()
top5.reset_index(drop=True, inplace=True)
# Compute keywords only for top posts
for idx, row in top5.iterrows():
pid = row["post_id"]
post_text = posts[posts["post_id"] == pid].iloc[0]["text"]
kw = keywords_for_df(pd.DataFrame({"text": [post_text]}), top_n=2)
keywords_list = [k for k, _ in kw][:2]
top5.at[idx, "Post Keywords"] = ", ".join(keywords_list)
# Format numeric columns
for df_part in (top5,):
df_part["Weighted Sentiment of Thread"] = df_part["Weighted Sentiment of Thread"].map("{:.2f}".format)
df_part["Total Score"] = df_part["Total Score"].map("{:,}".format)
df_part["Contribution Weight"] = df_part["Contribution Weight"].map("{:.2%}".format)
df_part["Total Sentiment Contribution"] = df_part["Total Sentiment Contribution"].map("{:.4f}".format)
st.subheader("Top 5 Posts by Contribution Weight")
st.dataframe(
top5[["Post Keywords", "Weighted Sentiment of Thread", "Contribution Weight", "Total Sentiment Contribution", "# Comments", "Total Score"]],
use_container_width=True
)
st.subheader("Post Details")
for idx, row in top5.reset_index(drop=True).iterrows():
pid = row["post_id"]
post_obj = posts[posts["post_id"] == pid].iloc[0]
post_text = post_obj["text"]
first_line = post_text.split("\n")[0][:50]
with st.expander(f"{idx} - {first_line}..."):
# Post Metrics
post_sent = post_obj["sentiment"]
# Normalize post sentiment to [-1,1]
post_sent_norm = 2 * post_sent - 1
post_score = post_obj["score"]
ps = pd.to_numeric(post_score, errors="coerce")
post_score_num = ps if (not np.isnan(ps) and ps >= 0) else 0
# Compute post weight
post_weight = (1 + np.log1p(post_score_num)) * gamma_post
st.markdown("**Post:**")
st.markdown(f"{post_text[:300]}{'...' if len(post_text) > 300 else ''}"
f"(Sentiment: {post_sent_norm:.2f}, Weight: {post_weight:.2f}, Score: {post_score:,})"
)
st.markdown("---")
# Display top 5 comments with metrics
top_comments = (
comments[comments["parent_id"] == f"t3_{pid}"]
.sort_values("score", ascending=False)
.head(5)
)
st.markdown("**Top Comments:**")
for c_idx, comment in top_comments.iterrows():
c_text = comment["text"]
# Normalize comment sentiment and compute weight
c_sent_norm = 2 * comment["sentiment"] - 1
c_score = comment["score"]
cs = pd.to_numeric(c_score, errors="coerce")
c_score_num = cs if (not np.isnan(cs) and cs >= 0) else 0
c_weight = 1 + np.log1p(c_score_num)
st.markdown(
f"{c_idx}. {c_text[:200]}{'...' if len(c_text) > 200 else ''} "
f"(Sentiment: {c_sent_norm:.2f}, Weight: {c_weight:.2f}, Score: {c_score:,})"
)
# Display the data source attribution
# st.markdown(last_update_caption, unsafe_allow_html=True) |