Spaces:
Running
Running
File size: 11,128 Bytes
a6576f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
#!/usr/bin/env python
"""
Summarise scored shards into one daily_summary.csv
CLI examples
------------
# Summarize data for a specific date
python -m reddit_analysis.summarizer.summarize --date 2025-04-20
"""
from __future__ import annotations
import argparse
from datetime import date
from pathlib import Path
from typing import Optional, List, Dict, Any, Set, Tuple
import pandas as pd
from huggingface_hub import hf_hub_download, HfApi
from reddit_analysis.config_utils import setup_config
from reddit_analysis.summarizer.aggregator import summary_from_df
# --------------------------------------------------------------------------- #
# Utilities #
# --------------------------------------------------------------------------- #
class FileManager:
"""Wrapper class for simple local file I/O that can be mocked for testing."""
def __init__(self, base_dir: Path):
self.base_dir = base_dir
self.base_dir.mkdir(parents=True, exist_ok=True)
# ---------- CSV helpers ------------------------------------------------- #
def read_csv(self, path: Path) -> pd.DataFrame:
if not path.exists() or path.stat().st_size == 0:
return pd.DataFrame(
columns=["date", "subreddit",
"mean_sentiment", "community_weighted_sentiment", "count"]
)
return pd.read_csv(path)
def write_csv(self, df: pd.DataFrame, path: Path) -> Path:
df.to_csv(path, index=False)
return path
# ---------- Parquet helper --------------------------------------------- #
@staticmethod
def read_parquet(path: Path) -> pd.DataFrame:
return pd.read_parquet(path)
class HuggingFaceManager:
"""Thin wrapper around Hugging Face Hub file ops (mock‑friendly)."""
def __init__(self, token: str, repo_id: str, repo_type: str = "dataset"):
self.token = token
self.repo_id = repo_id
self.repo_type = repo_type
self.api = HfApi(token=token)
def download_file(self, path_in_repo: str) -> Path:
return Path(
hf_hub_download(
repo_id=self.repo_id,
repo_type=self.repo_type,
filename=path_in_repo,
token=self.token
)
)
def upload_file(self, local_path: str, path_in_repo: str):
self.api.upload_file(
path_or_fileobj=local_path,
path_in_repo=path_in_repo,
repo_id=self.repo_id,
repo_type=self.repo_type,
token=self.token
)
def list_files(self, prefix: str) -> List[str]:
"""List files in the HF repo filtered by prefix."""
files = self.api.list_repo_files(
repo_id=self.repo_id,
repo_type=self.repo_type
)
return [f for f in files if f.startswith(prefix)]
# --------------------------------------------------------------------------- #
# Core manager #
# --------------------------------------------------------------------------- #
class SummaryManager:
def __init__(
self,
cfg: Dict[str, Any],
file_manager: Optional[FileManager] = None,
hf_manager: Optional[HuggingFaceManager] = None
):
self.config = cfg["config"]
self.secrets = cfg["secrets"]
self.paths = cfg["paths"]
# I/O helpers
self.file_manager = file_manager or FileManager(self.paths["root"])
self.hf_manager = hf_manager or HuggingFaceManager(
token=self.secrets["HF_TOKEN"],
repo_id=self.config["repo_id"],
repo_type=self.config.get("repo_type", "dataset"),
)
# Cache path for the combined summary file on disk
self.local_summary_path: Path = self.paths["summary_file"]
# --------------------------------------------------------------------- #
# Remote summary helpers #
# --------------------------------------------------------------------- #
def _load_remote_summary(self) -> pd.DataFrame:
"""
Ensure `daily_summary.csv` is present locally by downloading the
latest version from HF Hub (if it exists) and return it as a DataFrame.
"""
remote_name = self.paths["summary_file"].name
try:
cached_path = self.hf_manager.download_file(remote_name)
except Exception:
# first run – file doesn't exist yet on the Hub
return pd.DataFrame(
columns=["date", "subreddit",
"mean_sentiment", "community_weighted_sentiment", "count"]
)
return pd.read_csv(cached_path)
def _save_and_push_summary(self, df: pd.DataFrame):
"""Persist the updated summary both locally and back to HF Hub."""
self.file_manager.write_csv(df, self.local_summary_path)
self.hf_manager.upload_file(str(self.local_summary_path),
self.local_summary_path.name)
# --------------------------------------------------------------------- #
# Public helpers #
# --------------------------------------------------------------------- #
def get_processed_combinations(self) -> Set[Tuple[date, str]]:
"""
Return a set of (date, subreddit) pairs that are *already* present
in the remote summary so we can de‑duplicate.
"""
df_summary = self._load_remote_summary()
if df_summary.empty:
return set()
df_summary["date"] = pd.to_datetime(df_summary["date"]).dt.date
return {
(row["date"], row["subreddit"])
for _, row in df_summary.iterrows()
}
# --------------------------------------------------------------------- #
# Main workflow #
# --------------------------------------------------------------------- #
def process_date(self, date_str: str, overwrite: bool = False) -> None:
"""Download scored data for `date_str`, aggregate, and append/upload."""
# ---------- Pull scored shards for the given date ------------------ #
prefix = f"{self.paths['hf_scored_dir']}/{date_str}__"
# List all remote shards
try:
all_files = self.hf_manager.list_files(self.paths['hf_scored_dir'])
except Exception as err:
print(f"Error: could not list scored shards in {self.paths['hf_scored_dir']}: {err}")
return
# Filter to shards matching this date
try:
shards = [fn for fn in all_files if fn.startswith(prefix) and fn.endswith('.parquet')]
except TypeError:
# fall back in case list_files returned a non-iterable (e.g., a mock)
shards = [all_files]
if not shards:
print(f"No scored shards found for {date_str} under {self.paths['hf_scored_dir']}")
return
# Download and concatenate all shards
dfs: List[pd.DataFrame] = []
for shard in shards:
try:
local_path = self.hf_manager.download_file(shard)
except Exception as err:
print(f"Error: could not download scored shard {shard}: {err}")
return
dfs.append(self.file_manager.read_parquet(local_path))
df_day = pd.concat(dfs, ignore_index=True)
# sanity‑check
required_cols = {"retrieved_at", "subreddit", "sentiment", "score"}
if not required_cols.issubset(df_day.columns):
raise ValueError(f"{shards[0]} missing columns {required_cols}")
# ---------- Aggregate ------------------------------------------------ #
df_summary_day = summary_from_df(df_day)
# ---------- De‑duplication / overwrite ------------------------------ #
existing_pairs = self.get_processed_combinations()
if not overwrite:
df_summary_day = df_summary_day[
~df_summary_day.apply(
lambda r: (r["date"], r["subreddit"]) in existing_pairs,
axis=1,
)
]
if df_summary_day.empty:
print("Nothing new to summarise for this date.")
return
# ---------- Combine with historical summary ------------------------- #
df_summary = self._load_remote_summary()
if overwrite:
df_summary = df_summary[df_summary["date"] != date_str]
# Remove weighted_sentiment column if it exists
if "weighted_sentiment" in df_summary.columns:
df_summary = df_summary.drop(columns=["weighted_sentiment"])
df_out = (
pd.concat([df_summary, df_summary_day], ignore_index=True)
if not df_summary.empty
else df_summary_day
)
df_out["date"] = pd.to_datetime(df_out["date"]).dt.date
df_out.sort_values(["date", "subreddit"], inplace=True)
# Ensure the weighted_sentiment column is dropped from final output
if "weighted_sentiment" in df_out.columns:
df_out = df_out.drop(columns=["weighted_sentiment"])
# Round floating point columns to 4 decimal places
if "mean_sentiment" in df_out.columns:
df_out["mean_sentiment"] = df_out["mean_sentiment"].round(4)
if "community_weighted_sentiment" in df_out.columns:
df_out["community_weighted_sentiment"] = df_out["community_weighted_sentiment"].round(4)
# ---------- Save & upload ------------------------------------------- #
self._save_and_push_summary(df_out)
print(f"Updated {self.local_summary_path.name} → {len(df_out)} rows")
# --------------------------------------------------------------------------- #
# CLI entry‑point #
# --------------------------------------------------------------------------- #
def main(date_str: str, overwrite: bool = False) -> None:
if not date_str:
raise ValueError("--date is required (YYYY-MM-DD)")
# Confirm valid date
try:
date.fromisoformat(date_str)
except ValueError:
raise ValueError(f"Invalid date: {date_str} (expected YYYY‑MM‑DD)")
cfg = setup_config()
SummaryManager(cfg).process_date(date_str, overwrite)
if __name__ == "__main__":
from reddit_analysis.common_metrics import run_with_metrics
parser = argparse.ArgumentParser(
description="Summarize scored Reddit data for a specific date."
)
parser.add_argument("--date", required=True,
help="YYYY-MM-DD date to process")
parser.add_argument("--overwrite", action="store_true",
help="Replace any existing rows for this date")
args = parser.parse_args()
run_with_metrics("summarize", main, args.date, args.overwrite)
|