hblim's picture
Clean codebase for HF Space (drop Prometheus binary data)
a6576f0
#!/usr/bin/env python
"""
Score Reddit posts and comments using Replicate.
CLI examples
------------
# Score data for a specific date
python -m reddit_analysis.inference.score --date 2025-04-20
"""
from __future__ import annotations
import argparse
import logging
from datetime import date, timedelta
from pathlib import Path
from typing import Optional, List, Dict, Any
import pandas as pd
import pyarrow.parquet as pq
from huggingface_hub import (
hf_hub_download,
list_repo_files,
login,
upload_file,
HfApi
)
import replicate
import json
import httpx
import re
from reddit_analysis.config_utils import setup_config
import json
import time
from typing import List, Dict
import httpx
import replicate
def setup_logging(logs_dir: Path) -> logging.Logger:
"""Set up logging configuration using logs_dir from config."""
logs_dir.mkdir(parents=True, exist_ok=True)
# Create log filename with current date
log_file = logs_dir / f"reddit_scorer_{date.today().strftime('%Y-%m-%d')}.log"
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_file, encoding="utf-8")
]
)
logger = logging.getLogger(__name__)
logger.info(f"Logging initialized. Log file: {log_file}")
return logger
class ReplicateAPI:
"""Wrapper class for Replicate API interactions."""
def __init__(self, api_token: str, model: str, timeout_s: int = 1200):
# Replicate accepts an httpx.Timeout via the `timeout=` kwarg
self.client = replicate.Client(
api_token=api_token,
timeout=httpx.Timeout(timeout_s) # same limit for connect/read/write/pool
)
self.model = model
self.retries = 3 # total attempts per batch
self.logger = logging.getLogger(__name__)
def predict(self, texts: List[str]) -> Dict[str, List[float]]:
"""Run sentiment analysis on a batch of texts.
Sends payload as a *JSON string* (your requirement) and
retries on transient HTTP/1.1 disconnects or timeouts.
"""
payload = {"texts": json.dumps(texts)} # keep JSON string
for attempt in range(self.retries):
try:
result = self.client.run(self.model, input=payload)
# Expected Replicate output structure
return {
"predicted_labels": result.get("predicted_labels", []),
"confidences": result.get("confidences", []),
}
except (httpx.RemoteProtocolError, httpx.ReadTimeout) as err:
if attempt == self.retries - 1:
raise # re‑raise on final failure
backoff = 2 ** attempt # 1 s, 2 s, 4 s …
self.logger.warning(f"{err!s} – retrying in {backoff}s")
time.sleep(backoff)
class FileManager:
"""Wrapper class for file operations that can be mocked for testing."""
def __init__(self, base_dir: Path):
self.base_dir = base_dir
self.base_dir.mkdir(parents=True, exist_ok=True)
def save_parquet(self, df: pd.DataFrame, filename: str) -> Path:
path = self.base_dir / f"{filename}.parquet"
df.to_parquet(path, index=False)
return path
def read_parquet(self, filename: str) -> pd.DataFrame:
path = self.base_dir / f"{filename}"
return pd.read_parquet(path)
class HuggingFaceManager:
"""Wrapper class for HuggingFace Hub operations that can be mocked for testing."""
def __init__(self, token: str, repo_id: str, repo_type: str = "dataset"):
self.token = token
self.repo_id = repo_id
self.repo_type = repo_type
self.api = HfApi(token=token)
def download_file(self, path_in_repo: str) -> Path:
return Path(hf_hub_download(
repo_id=self.repo_id,
repo_type=self.repo_type,
filename=path_in_repo,
token=self.token
))
def upload_file(self, local_path: str, path_in_repo: str):
self.api.upload_file(
path_or_fileobj=local_path,
path_in_repo=path_in_repo,
repo_id=self.repo_id,
repo_type=self.repo_type,
token=self.token
)
def list_files(self, prefix: str) -> List[str]:
files = self.api.list_repo_files(
repo_id=self.repo_id,
repo_type=self.repo_type
)
return [file for file in files if file.startswith(prefix)]
class SentimentScorer:
def __init__(
self,
cfg: Dict[str, Any],
replicate_api: Optional[ReplicateAPI] = None,
file_manager: Optional[FileManager] = None,
hf_manager: Optional[HuggingFaceManager] = None
):
self.config = cfg['config']
self.secrets = cfg['secrets']
self.paths = cfg['paths']
self.logger = logging.getLogger(__name__)
# Initialize services with dependency injection
self.replicate_api = replicate_api or ReplicateAPI(
api_token=self.secrets['REPLICATE_API_TOKEN'],
model=self.config['replicate_model']
)
self.file_manager = file_manager or FileManager(self.paths['scored_dir'])
self.hf_manager = hf_manager or HuggingFaceManager(
token=self.secrets['HF_TOKEN'],
repo_id=self.config['repo_id'],
repo_type=self.config.get('repo_type', 'dataset')
)
def process_batch(self, texts: List[str]) -> tuple[List[float], List[float]]:
"""Process a batch of texts through the sentiment model."""
result = self.replicate_api.predict(texts)
return result['predicted_labels'], result['confidences']
def get_existing_subreddits(self, date_str: str) -> set:
"""Get set of subreddits that already have scored files for the given date."""
scored_files = self.hf_manager.list_files("data_scored_subreddit/")
existing_subreddits = set()
for fn in scored_files:
if fn.startswith(f"data_scored_subreddit/{date_str}__") and fn.endswith('.parquet'):
# Extract subreddit from filename: data_scored_subreddit/{date}__{subreddit}.parquet
subreddit = Path(fn).stem.split('__', 1)[1]
existing_subreddits.add(subreddit)
return existing_subreddits
def _sanitize(self, name: str) -> str:
"""
Make subreddit safe for filenames (removes slashes, spaces, etc.).
"""
name = name.strip().lower()
name = re.sub(r"[^\w\-\.]", "_", name)
return name
def score_date(self, date_str: str, overwrite: bool = False) -> None:
"""Process a single date: download, score, save, and upload separate files per subreddit."""
self.logger.info(f"Scoring date: {date_str}")
# Get existing subreddits if not overwriting
existing_subreddits = set()
if not overwrite:
existing_subreddits = self.get_existing_subreddits(date_str)
if existing_subreddits:
self.logger.info(f"Found {len(existing_subreddits)} existing subreddit files for {date_str}")
# Download raw file
raw_path = f"{self.paths['hf_raw_dir']}/{date_str}.parquet"
local_path = self.hf_manager.download_file(raw_path)
df = self.file_manager.read_parquet(str(local_path))
# Validate required columns
required_columns = {'text', 'score', 'post_id', 'subreddit'}
missing_columns = required_columns - set(df.columns)
if missing_columns:
raise ValueError(f"Missing required columns: {', '.join(missing_columns)}")
# Filter out existing subreddits if not overwriting
subreddits_to_process = df['subreddit'].unique()
if not overwrite and existing_subreddits:
subreddits_to_process = [s for s in subreddits_to_process if s not in existing_subreddits]
if not subreddits_to_process:
self.logger.info(f"All subreddits already processed for {date_str}")
return
df = df[df['subreddit'].isin(subreddits_to_process)].copy()
self.logger.info(f"Processing {len(subreddits_to_process)} new subreddits for {date_str}")
# Process in batches
batch_size = self.config.get('batch_size', 16)
texts = df['text'].tolist()
sentiments = []
confidences = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i + batch_size]
batch_sentiments, batch_confidences = self.process_batch(batch)
sentiments.extend(batch_sentiments[:len(batch)]) # Only take as many results as input texts
confidences.extend(batch_confidences[:len(batch)]) # Only take as many results as input texts
# Add results to DataFrame
df['sentiment'] = sentiments
df['confidence'] = confidences
# Group by subreddit and save separate files
subreddits = df['subreddit'].unique()
self.logger.info(f"Found {len(subreddits)} subreddits to process for {date_str}")
for subreddit in subreddits:
subreddit_df = df[df['subreddit'] == subreddit].copy()
# Save scored file per subreddit using sanitized subreddit
safe_sub = self._sanitize(subreddit)
filename = f"{date_str}__{safe_sub}"
scored_path = self.file_manager.save_parquet(subreddit_df, filename)
# Upload to HuggingFace with new path structure
path_in_repo = f"data_scored_subreddit/{date_str}__{safe_sub}.parquet"
self.hf_manager.upload_file(str(scored_path), path_in_repo)
self.logger.info(f"Uploaded scored file for {date_str}/{subreddit} ({len(subreddit_df)} rows) to {self.config['repo_id']}/{path_in_repo}")
def main(date_arg: str = None, overwrite: bool = False) -> None:
if date_arg is None:
raise ValueError("Date argument is required")
# Load configuration
cfg = setup_config()
# Initialize logging
logger = setup_logging(cfg['paths']['logs_dir'])
# Check if REPLICATE_API_TOKEN is available
if 'REPLICATE_API_TOKEN' not in cfg['secrets']:
raise ValueError("REPLICATE_API_TOKEN is required for scoring")
# Initialize scorer
scorer = SentimentScorer(cfg)
# Check if date exists in raw files
raw_dates = set()
for fn in scorer.hf_manager.list_files(scorer.paths['hf_raw_dir']):
if fn.endswith('.parquet'):
raw_dates.add(Path(fn).stem)
if date_arg not in raw_dates:
logger.warning(f"No raw file found for date {date_arg}")
return
# Check if date already exists in scored files (check subreddit files)
if not overwrite:
# Get existing scored files for this date
scored_files = scorer.hf_manager.list_files("data_scored_subreddit/")
existing_subreddits = set()
for fn in scored_files:
if fn.startswith(f"data_scored_subreddit/{date_arg}__") and fn.endswith('.parquet'):
# Extract subreddit from filename: data_scored_subreddit/{date}__{subreddit}.parquet
subreddit = Path(fn).stem.split('__', 1)[1]
existing_subreddits.add(subreddit)
# Check what subreddits are in the raw data
raw_path = f"{scorer.paths['hf_raw_dir']}/{date_arg}.parquet"
try:
local_path = scorer.hf_manager.download_file(raw_path)
df = scorer.file_manager.read_parquet(str(local_path))
raw_subreddits = set(df['subreddit'].unique())
# If all subreddits already exist, skip processing
if raw_subreddits.issubset(existing_subreddits):
logger.info(f"All subreddits for date {date_arg} already scored ({len(existing_subreddits)} files)")
return
else:
missing_subreddits = raw_subreddits - existing_subreddits
logger.info(f"Some subreddits missing for {date_arg}: {missing_subreddits}")
except Exception as e:
logger.warning(f"Could not check existing subreddits for {date_arg}: {e}")
# Score the specified date
scorer.score_date(date_arg, overwrite)
if __name__ == '__main__':
from reddit_analysis.common_metrics import run_with_metrics
parser = argparse.ArgumentParser(description='Score raw HF dataset files via Replicate.')
parser.add_argument('--date', type=str, required=True, help='YYYY-MM-DD date to process')
parser.add_argument('--overwrite', action='store_true', help='Overwrite existing scored file')
args = parser.parse_args()
run_with_metrics("score", main, args.date, args.overwrite)