Spaces:
Running
Running
#!/usr/bin/env python | |
""" | |
Scrape Reddit posts and comments. | |
CLI examples | |
------------ | |
# Scrape data for a specific date | |
python -m reddit_analysis.scraper.scrape --date 2025-04-20 | |
""" | |
from __future__ import annotations | |
import argparse | |
import os | |
import sys | |
from datetime import datetime, timedelta | |
from pathlib import Path | |
from typing import Optional, List, Dict, Any | |
import pandas as pd | |
import pyarrow.parquet as pq | |
from huggingface_hub import ( | |
hf_hub_download, | |
list_repo_files, | |
login, | |
upload_file, | |
HfApi | |
) | |
import praw | |
import logging | |
import pytz | |
from tqdm import tqdm | |
from reddit_analysis.config_utils import setup_config | |
class RedditAPI: | |
"""Wrapper class for Reddit API interactions that can be mocked for testing.""" | |
def __init__(self, client_id: str, client_secret: str, user_agent: str): | |
self.reddit = praw.Reddit( | |
client_id=client_id, | |
client_secret=client_secret, | |
user_agent=user_agent | |
) | |
def get_subreddit(self, name: str): | |
return self.reddit.subreddit(name) | |
def get_rate_limit_info(self) -> Dict[str, Any]: | |
return { | |
'used': self.reddit.auth.limits.get('used'), | |
'remaining': self.reddit.auth.limits.get('remaining'), | |
'reset_timestamp': self.reddit.auth.limits.get('reset_timestamp') | |
} | |
class FileManager: | |
"""Wrapper class for file operations that can be mocked for testing.""" | |
def __init__(self, base_dir: Path): | |
self.base_dir = base_dir | |
self.base_dir.mkdir(parents=True, exist_ok=True) | |
def save_csv(self, df: pd.DataFrame, filename: str) -> Path: | |
path = self.base_dir / f"{filename}.csv" | |
df.to_csv(path, index=False) | |
return path | |
def save_parquet(self, df: pd.DataFrame, filename: str) -> Path: | |
path = self.base_dir / f"{filename}.parquet" | |
df.to_parquet(path, index=False) | |
return path | |
def read_parquet(self, filename: str) -> pd.DataFrame: | |
path = self.base_dir / f"{filename}.parquet" | |
return pd.read_parquet(path) | |
class HuggingFaceManager: | |
"""Wrapper class for HuggingFace Hub operations that can be mocked for testing.""" | |
def __init__(self, token: str, repo_id: str, repo_type: str = "dataset"): | |
self.token = token | |
self.repo_id = repo_id | |
self.repo_type = repo_type | |
self.api = HfApi(token=token) | |
def download_file(self, path_in_repo: str) -> Path: | |
return Path(hf_hub_download( | |
repo_id=self.repo_id, | |
repo_type=self.repo_type, | |
filename=path_in_repo, | |
token=self.token | |
)) | |
def upload_file(self, local_path: str, path_in_repo: str): | |
self.api.upload_file( | |
path_or_fileobj=local_path, | |
path_in_repo=path_in_repo, | |
repo_id=self.repo_id, | |
repo_type=self.repo_type, | |
token=self.token | |
) | |
def list_files(self, prefix: str) -> List[str]: | |
return self.api.list_repo_files( | |
repo_id=self.repo_id, | |
repo_type=self.repo_type | |
) | |
class RedditScraper: | |
def __init__( | |
self, | |
cfg: Dict[str, Any], | |
reddit_api: Optional[RedditAPI] = None, | |
file_manager: Optional[FileManager] = None, | |
hf_manager: Optional[HuggingFaceManager] = None | |
): | |
self.config = cfg['config'] | |
self.secrets = cfg['secrets'] | |
self.paths = cfg['paths'] | |
self.logger = logging.getLogger(__name__) | |
# Initialize services with dependency injection | |
self.reddit_api = reddit_api or RedditAPI( | |
client_id=self.secrets.get('REDDIT_CLIENT_ID'), | |
client_secret=self.secrets.get('REDDIT_CLIENT_SECRET'), | |
user_agent=self.secrets.get('REDDIT_USER_AGENT') | |
) | |
self.file_manager = file_manager or FileManager(self.paths['raw_dir']) | |
if self.config.get('push_to_hf', False): | |
self.hf_manager = hf_manager or HuggingFaceManager( | |
token=self.secrets.get('HF_TOKEN'), | |
repo_id=self.config.get('repo_id'), | |
repo_type=self.config.get('repo_type', 'dataset') | |
) | |
else: | |
self.hf_manager = hf_manager | |
self.timezone = pytz.timezone(self.config['timezone']) | |
self.logger.info(f"Output directory set to: {self.paths['raw_dir']}") | |
def get_posts(self, subreddit_config: Dict[str, Any]) -> pd.DataFrame: | |
"""Fetch posts and comments from a subreddit based on configuration.""" | |
subreddit_name = subreddit_config['name'] | |
post_limit = subreddit_config['post_limit'] | |
comment_limit = subreddit_config['comment_limit'] | |
retrieved_at = datetime.now(self.timezone) | |
records = [] | |
subreddit = self.reddit_api.get_subreddit(subreddit_name) | |
self.logger.info(f"Fetching {post_limit} posts from r/{subreddit_name}") | |
for submission in tqdm( | |
subreddit.top(time_filter="day", limit=post_limit), | |
total=post_limit, | |
desc=f"Processing r/{subreddit_name}" | |
): | |
# Add post record | |
records.append({ | |
"subreddit": subreddit_name, | |
"created_at": datetime.fromtimestamp(submission.created_utc, tz=self.timezone), | |
"retrieved_at": retrieved_at, | |
"type": "post", | |
"text": submission.title + "\n\n" + submission.selftext, | |
"score": submission.score, | |
"post_id": submission.id, | |
"parent_id": None | |
}) | |
# Get top comments if comment_limit > 0 | |
if comment_limit > 0: | |
submission.comment_sort = 'top' | |
submission.comments.replace_more(limit=0) | |
comments = getattr(submission.comments, '_comments', [])[:comment_limit] | |
for comment in comments: | |
records.append({ | |
"subreddit": subreddit_name, | |
"created_at": datetime.fromtimestamp(comment.created_utc, tz=self.timezone), | |
"retrieved_at": retrieved_at, | |
"type": "comment", | |
"text": comment.body, | |
"score": comment.score, | |
"post_id": comment.id, | |
"parent_id": comment.parent_id | |
}) | |
return pd.DataFrame(records) | |
def print_rate_limit_info(self): | |
"""Print current Reddit API rate limit information.""" | |
limits = self.reddit_api.get_rate_limit_info() | |
reset_ts = limits.get('reset_timestamp') | |
reset_time = ( | |
datetime.fromtimestamp(reset_ts, tz=self.timezone) | |
.strftime("%Y-%m-%d %I:%M:%S %p %Z") | |
if reset_ts else "Unknown" | |
) | |
self.logger.info("Reddit API Rate Limit Info") | |
self.logger.info(f"Requests used: {limits.get('used')}") | |
self.logger.info(f"Requests remaining: {limits.get('remaining')}") | |
self.logger.info(f"Resets at: {reset_time}") | |
def process_date(self, date_str: str) -> None: | |
"""Process data for a specific date.""" | |
self.logger.info(f"Processing data for date: {date_str}") | |
all_records = [] | |
for sub_cfg in self.config['subreddits']: | |
self.logger.info(f"Processing subreddit: {sub_cfg['name']}") | |
df = self.get_posts(sub_cfg) | |
all_records.append(df) | |
combined_df = pd.concat(all_records, ignore_index=True) | |
self.logger.info(f"Total records collected: {len(combined_df)}") | |
# Save to CSV | |
self.file_manager.save_csv(combined_df, date_str) | |
# Upload to HuggingFace if configured | |
if self.config.get('push_to_hf', False): | |
self._upload_to_hf(combined_df, date_str) | |
self.print_rate_limit_info() | |
self.logger.info("Reddit scraper completed successfully") | |
def _upload_to_hf(self, df: pd.DataFrame, date_str: str) -> None: | |
"""Upload data to HuggingFace Hub.""" | |
try: | |
current_date = datetime.strptime(date_str, "%Y-%m-%d") | |
prev_date = (current_date - timedelta(days=1)).strftime("%Y-%m-%d") | |
prev_file_path = f"{self.paths['hf_raw_dir']}/{prev_date}.parquet" | |
self.logger.info(f"Checking for previous day's file: {prev_file_path}") | |
try: | |
downloaded_path = self.hf_manager.download_file(prev_file_path) | |
existing_df = pd.read_parquet(downloaded_path) | |
existing_ids = set(existing_df["post_id"].tolist()) | |
Path(downloaded_path).unlink() | |
original_count = len(df) | |
df = df[~df["post_id"].isin(existing_ids)] | |
filtered_count = len(df) | |
self.logger.info(f"Filtered {original_count - filtered_count} duplicates") | |
if df.empty: | |
self.logger.info("No new posts to upload after deduplication") | |
return | |
except Exception as e: | |
self.logger.warning(f"Could not fetch/process previous file: {e}") | |
parquet_path = self.file_manager.save_parquet(df, date_str) | |
path_in_repo = f"{self.paths['hf_raw_dir']}/{date_str}.parquet" | |
self.hf_manager.upload_file(str(parquet_path), path_in_repo) | |
self.logger.info(f"Uploaded {len(df)} rows for {date_str} → {path_in_repo}") | |
except Exception as e: | |
self.logger.error(f"Failed to upload to Hugging Face: {e}") | |
raise | |
def setup_logging(logs_dir: Path) -> logging.Logger: | |
"""Set up logging configuration using logs_dir from config.""" | |
logs_dir.mkdir(parents=True, exist_ok=True) | |
# Create log filename with current date | |
log_file = logs_dir / f"reddit_scraper_{datetime.now().strftime('%Y-%m-%d')}.log" | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.FileHandler(log_file, encoding="utf-8") | |
] | |
) | |
logger = logging.getLogger(__name__) | |
logger.info(f"Logging initialized. Log file: {log_file}") | |
return logger | |
def main(date_str: str = None) -> None: | |
# Load configuration first | |
cfg = setup_config() | |
# Initialize logging with configured logs_dir | |
logs_dir = cfg['paths']['logs_dir'] | |
logger = setup_logging(logs_dir) | |
logger.info("Starting Reddit scraper...") | |
# Validate environment variables | |
required_env_vars = ["REDDIT_CLIENT_ID", "REDDIT_CLIENT_SECRET", "REDDIT_USER_AGENT"] | |
if cfg['config'].get('push_to_hf', False): | |
required_env_vars.append("HF_TOKEN") | |
missing = [v for v in required_env_vars if not cfg['secrets'].get(v) and not os.getenv(v)] | |
if missing: | |
logger.error(f"Missing required environment variables: {', '.join(missing)}") | |
raise ValueError(f"Missing required environment variables: {', '.join(missing)}") | |
# Instantiate and run | |
logger.info("Initializing Reddit scraper...") | |
scraper = RedditScraper(cfg) | |
if date_str is None: | |
date_str = datetime.now(pytz.timezone(cfg['config']['timezone'])).strftime("%Y-%m-%d") | |
scraper.process_date(date_str) | |
if __name__ == "__main__": | |
from reddit_analysis.common_metrics import run_with_metrics | |
parser = argparse.ArgumentParser(description='Scrape Reddit posts and comments.') | |
parser.add_argument('--date', type=str, help='YYYY-MM-DD date to process') | |
args = parser.parse_args() | |
run_with_metrics("scrape", main, args.date) | |