hblim's picture
Clean codebase for HF Space (drop Prometheus binary data)
a6576f0
#!/usr/bin/env python
"""
Scrape Reddit posts and comments.
CLI examples
------------
# Scrape data for a specific date
python -m reddit_analysis.scraper.scrape --date 2025-04-20
"""
from __future__ import annotations
import argparse
import os
import sys
from datetime import datetime, timedelta
from pathlib import Path
from typing import Optional, List, Dict, Any
import pandas as pd
import pyarrow.parquet as pq
from huggingface_hub import (
hf_hub_download,
list_repo_files,
login,
upload_file,
HfApi
)
import praw
import logging
import pytz
from tqdm import tqdm
from reddit_analysis.config_utils import setup_config
class RedditAPI:
"""Wrapper class for Reddit API interactions that can be mocked for testing."""
def __init__(self, client_id: str, client_secret: str, user_agent: str):
self.reddit = praw.Reddit(
client_id=client_id,
client_secret=client_secret,
user_agent=user_agent
)
def get_subreddit(self, name: str):
return self.reddit.subreddit(name)
def get_rate_limit_info(self) -> Dict[str, Any]:
return {
'used': self.reddit.auth.limits.get('used'),
'remaining': self.reddit.auth.limits.get('remaining'),
'reset_timestamp': self.reddit.auth.limits.get('reset_timestamp')
}
class FileManager:
"""Wrapper class for file operations that can be mocked for testing."""
def __init__(self, base_dir: Path):
self.base_dir = base_dir
self.base_dir.mkdir(parents=True, exist_ok=True)
def save_csv(self, df: pd.DataFrame, filename: str) -> Path:
path = self.base_dir / f"{filename}.csv"
df.to_csv(path, index=False)
return path
def save_parquet(self, df: pd.DataFrame, filename: str) -> Path:
path = self.base_dir / f"{filename}.parquet"
df.to_parquet(path, index=False)
return path
def read_parquet(self, filename: str) -> pd.DataFrame:
path = self.base_dir / f"{filename}.parquet"
return pd.read_parquet(path)
class HuggingFaceManager:
"""Wrapper class for HuggingFace Hub operations that can be mocked for testing."""
def __init__(self, token: str, repo_id: str, repo_type: str = "dataset"):
self.token = token
self.repo_id = repo_id
self.repo_type = repo_type
self.api = HfApi(token=token)
def download_file(self, path_in_repo: str) -> Path:
return Path(hf_hub_download(
repo_id=self.repo_id,
repo_type=self.repo_type,
filename=path_in_repo,
token=self.token
))
def upload_file(self, local_path: str, path_in_repo: str):
self.api.upload_file(
path_or_fileobj=local_path,
path_in_repo=path_in_repo,
repo_id=self.repo_id,
repo_type=self.repo_type,
token=self.token
)
def list_files(self, prefix: str) -> List[str]:
return self.api.list_repo_files(
repo_id=self.repo_id,
repo_type=self.repo_type
)
class RedditScraper:
def __init__(
self,
cfg: Dict[str, Any],
reddit_api: Optional[RedditAPI] = None,
file_manager: Optional[FileManager] = None,
hf_manager: Optional[HuggingFaceManager] = None
):
self.config = cfg['config']
self.secrets = cfg['secrets']
self.paths = cfg['paths']
self.logger = logging.getLogger(__name__)
# Initialize services with dependency injection
self.reddit_api = reddit_api or RedditAPI(
client_id=self.secrets.get('REDDIT_CLIENT_ID'),
client_secret=self.secrets.get('REDDIT_CLIENT_SECRET'),
user_agent=self.secrets.get('REDDIT_USER_AGENT')
)
self.file_manager = file_manager or FileManager(self.paths['raw_dir'])
if self.config.get('push_to_hf', False):
self.hf_manager = hf_manager or HuggingFaceManager(
token=self.secrets.get('HF_TOKEN'),
repo_id=self.config.get('repo_id'),
repo_type=self.config.get('repo_type', 'dataset')
)
else:
self.hf_manager = hf_manager
self.timezone = pytz.timezone(self.config['timezone'])
self.logger.info(f"Output directory set to: {self.paths['raw_dir']}")
def get_posts(self, subreddit_config: Dict[str, Any]) -> pd.DataFrame:
"""Fetch posts and comments from a subreddit based on configuration."""
subreddit_name = subreddit_config['name']
post_limit = subreddit_config['post_limit']
comment_limit = subreddit_config['comment_limit']
retrieved_at = datetime.now(self.timezone)
records = []
subreddit = self.reddit_api.get_subreddit(subreddit_name)
self.logger.info(f"Fetching {post_limit} posts from r/{subreddit_name}")
for submission in tqdm(
subreddit.top(time_filter="day", limit=post_limit),
total=post_limit,
desc=f"Processing r/{subreddit_name}"
):
# Add post record
records.append({
"subreddit": subreddit_name,
"created_at": datetime.fromtimestamp(submission.created_utc, tz=self.timezone),
"retrieved_at": retrieved_at,
"type": "post",
"text": submission.title + "\n\n" + submission.selftext,
"score": submission.score,
"post_id": submission.id,
"parent_id": None
})
# Get top comments if comment_limit > 0
if comment_limit > 0:
submission.comment_sort = 'top'
submission.comments.replace_more(limit=0)
comments = getattr(submission.comments, '_comments', [])[:comment_limit]
for comment in comments:
records.append({
"subreddit": subreddit_name,
"created_at": datetime.fromtimestamp(comment.created_utc, tz=self.timezone),
"retrieved_at": retrieved_at,
"type": "comment",
"text": comment.body,
"score": comment.score,
"post_id": comment.id,
"parent_id": comment.parent_id
})
return pd.DataFrame(records)
def print_rate_limit_info(self):
"""Print current Reddit API rate limit information."""
limits = self.reddit_api.get_rate_limit_info()
reset_ts = limits.get('reset_timestamp')
reset_time = (
datetime.fromtimestamp(reset_ts, tz=self.timezone)
.strftime("%Y-%m-%d %I:%M:%S %p %Z")
if reset_ts else "Unknown"
)
self.logger.info("Reddit API Rate Limit Info")
self.logger.info(f"Requests used: {limits.get('used')}")
self.logger.info(f"Requests remaining: {limits.get('remaining')}")
self.logger.info(f"Resets at: {reset_time}")
def process_date(self, date_str: str) -> None:
"""Process data for a specific date."""
self.logger.info(f"Processing data for date: {date_str}")
all_records = []
for sub_cfg in self.config['subreddits']:
self.logger.info(f"Processing subreddit: {sub_cfg['name']}")
df = self.get_posts(sub_cfg)
all_records.append(df)
combined_df = pd.concat(all_records, ignore_index=True)
self.logger.info(f"Total records collected: {len(combined_df)}")
# Save to CSV
self.file_manager.save_csv(combined_df, date_str)
# Upload to HuggingFace if configured
if self.config.get('push_to_hf', False):
self._upload_to_hf(combined_df, date_str)
self.print_rate_limit_info()
self.logger.info("Reddit scraper completed successfully")
def _upload_to_hf(self, df: pd.DataFrame, date_str: str) -> None:
"""Upload data to HuggingFace Hub."""
try:
current_date = datetime.strptime(date_str, "%Y-%m-%d")
prev_date = (current_date - timedelta(days=1)).strftime("%Y-%m-%d")
prev_file_path = f"{self.paths['hf_raw_dir']}/{prev_date}.parquet"
self.logger.info(f"Checking for previous day's file: {prev_file_path}")
try:
downloaded_path = self.hf_manager.download_file(prev_file_path)
existing_df = pd.read_parquet(downloaded_path)
existing_ids = set(existing_df["post_id"].tolist())
Path(downloaded_path).unlink()
original_count = len(df)
df = df[~df["post_id"].isin(existing_ids)]
filtered_count = len(df)
self.logger.info(f"Filtered {original_count - filtered_count} duplicates")
if df.empty:
self.logger.info("No new posts to upload after deduplication")
return
except Exception as e:
self.logger.warning(f"Could not fetch/process previous file: {e}")
parquet_path = self.file_manager.save_parquet(df, date_str)
path_in_repo = f"{self.paths['hf_raw_dir']}/{date_str}.parquet"
self.hf_manager.upload_file(str(parquet_path), path_in_repo)
self.logger.info(f"Uploaded {len(df)} rows for {date_str}{path_in_repo}")
except Exception as e:
self.logger.error(f"Failed to upload to Hugging Face: {e}")
raise
def setup_logging(logs_dir: Path) -> logging.Logger:
"""Set up logging configuration using logs_dir from config."""
logs_dir.mkdir(parents=True, exist_ok=True)
# Create log filename with current date
log_file = logs_dir / f"reddit_scraper_{datetime.now().strftime('%Y-%m-%d')}.log"
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler(log_file, encoding="utf-8")
]
)
logger = logging.getLogger(__name__)
logger.info(f"Logging initialized. Log file: {log_file}")
return logger
def main(date_str: str = None) -> None:
# Load configuration first
cfg = setup_config()
# Initialize logging with configured logs_dir
logs_dir = cfg['paths']['logs_dir']
logger = setup_logging(logs_dir)
logger.info("Starting Reddit scraper...")
# Validate environment variables
required_env_vars = ["REDDIT_CLIENT_ID", "REDDIT_CLIENT_SECRET", "REDDIT_USER_AGENT"]
if cfg['config'].get('push_to_hf', False):
required_env_vars.append("HF_TOKEN")
missing = [v for v in required_env_vars if not cfg['secrets'].get(v) and not os.getenv(v)]
if missing:
logger.error(f"Missing required environment variables: {', '.join(missing)}")
raise ValueError(f"Missing required environment variables: {', '.join(missing)}")
# Instantiate and run
logger.info("Initializing Reddit scraper...")
scraper = RedditScraper(cfg)
if date_str is None:
date_str = datetime.now(pytz.timezone(cfg['config']['timezone'])).strftime("%Y-%m-%d")
scraper.process_date(date_str)
if __name__ == "__main__":
from reddit_analysis.common_metrics import run_with_metrics
parser = argparse.ArgumentParser(description='Scrape Reddit posts and comments.')
parser.add_argument('--date', type=str, help='YYYY-MM-DD date to process')
args = parser.parse_args()
run_with_metrics("scrape", main, args.date)