File size: 4,767 Bytes
68fa4ef
06f147b
 
68fa4ef
 
 
 
 
 
 
 
21214a8
68fa4ef
 
 
 
 
 
06f147b
68fa4ef
06f147b
 
68fa4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06f147b
68fa4ef
 
 
 
 
 
 
 
 
 
 
 
 
a40eef3
68fa4ef
06f147b
68fa4ef
 
 
 
 
36c08d4
 
 
 
 
 
 
68fa4ef
 
 
 
 
 
21214a8
68fa4ef
21214a8
06f147b
 
 
 
 
 
 
 
 
 
 
68fa4ef
21214a8
 
68fa4ef
aa3e601
21214a8
68fa4ef
 
 
 
 
a40eef3
36c08d4
 
68fa4ef
 
 
36c08d4
 
 
a40eef3
aa3e601
fbb6998
68fa4ef
 
 
 
 
 
36c08d4
a40eef3
8cd08cb
 
68fa4ef
 
 
 
aa3e601
68fa4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns

from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    COLS,
    AutoEvalColumn,
    fields
)
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_leaderboard_df
from src.submission.submit import add_new_eval


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS)


def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.result_name.name,AutoEvalColumn.eval_name.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )



def greet_user(profile: gr.OAuthProfile | None):
    if profile is None:
        return "⚠️ You are not logged in."
    return f"πŸ‘‹ Hello, **{profile.username}**!"


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… GridNet-HD Benchmark", elem_id="benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)

            def reload_leaderboard():
                # Reload dataframe
                print("reload_leaderboard")
                df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS)
                return df
            # Load on app start or page refresh
            demo.load(
                fn=reload_leaderboard,
                inputs=[],
                outputs=[leaderboard]
            )

        with gr.TabItem("πŸ“ About", elem_id="benchmark-tab-table", id=2):
            gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text")


        with gr.TabItem("πŸš€ Submit here! ", elem_id="benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your result here!", elem_classes="markdown-text")
            with gr.Row():
                gr.LoginButton()

            with gr.Row():
                with gr.Column():
                    greeting = gr.Markdown()
                    demo.load(fn=greet_user, inputs=None, outputs=greeting)
                    # user_name_textbox = gr.Textbox(label="User name")
                    result_name_textbox = gr.Textbox(label="Result name")
                    npz_files_input = gr.File(label="Upload NPZ files", file_types=[".npz"], file_count="multiple")
                    remap = gr.Checkbox(label="Remap classes : check it if you upload original classes (evaluation will only be done on mapped classes.)", value=False)

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    # user_name_textbox,
                    result_name_textbox,
                    npz_files_input,
                    remap
                ],
                submission_result,
            )


    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()