File size: 4,767 Bytes
68fa4ef 06f147b 68fa4ef 21214a8 68fa4ef 06f147b 68fa4ef 06f147b 68fa4ef 06f147b 68fa4ef a40eef3 68fa4ef 06f147b 68fa4ef 36c08d4 68fa4ef 21214a8 68fa4ef 21214a8 06f147b 68fa4ef 21214a8 68fa4ef aa3e601 21214a8 68fa4ef a40eef3 36c08d4 68fa4ef 36c08d4 a40eef3 aa3e601 fbb6998 68fa4ef 36c08d4 a40eef3 8cd08cb 68fa4ef aa3e601 68fa4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COLS,
AutoEvalColumn,
fields
)
from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.result_name.name,AutoEvalColumn.eval_name.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
def greet_user(profile: gr.OAuthProfile | None):
if profile is None:
return "β οΈ You are not logged in."
return f"π Hello, **{profile.username}**!"
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
GridNet-HD Benchmark", elem_id="benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
def reload_leaderboard():
# Reload dataframe
print("reload_leaderboard")
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS)
return df
# Load on app start or page refresh
demo.load(
fn=reload_leaderboard,
inputs=[],
outputs=[leaderboard]
)
with gr.TabItem("π About", elem_id="benchmark-tab-table", id=2):
gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your result here!", elem_classes="markdown-text")
with gr.Row():
gr.LoginButton()
with gr.Row():
with gr.Column():
greeting = gr.Markdown()
demo.load(fn=greet_user, inputs=None, outputs=greeting)
# user_name_textbox = gr.Textbox(label="User name")
result_name_textbox = gr.Textbox(label="Result name")
npz_files_input = gr.File(label="Upload NPZ files", file_types=[".npz"], file_count="multiple")
remap = gr.Checkbox(label="Remap classes : check it if you upload original classes (evaluation will only be done on mapped classes.)", value=False)
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
# user_name_textbox,
result_name_textbox,
npz_files_input,
remap
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |