import gradio as gr from gradio_leaderboard import Leaderboard, SelectColumns from apscheduler.schedulers.background import BackgroundScheduler from huggingface_hub import snapshot_download from src.about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, BENCHMARKS_TEXT, TITLE, ) from src.display.css_html_js import custom_css from src.display.utils import ( COLS, AutoEvalColumn, fields ) from src.envs import API, EVAL_RESULTS_PATH, REPO_ID, RESULTS_REPO, TOKEN from src.populate import get_leaderboard_df from src.submission.submit import add_new_eval def restart_space(): API.restart_space(repo_id=REPO_ID) ### Space initialisation try: snapshot_download( repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN ) except Exception: restart_space() LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, COLS) def init_leaderboard(dataframe): if dataframe is None or dataframe.empty: raise ValueError("Leaderboard DataFrame is empty or None.") return Leaderboard( value=dataframe, datatype=[c.type for c in fields(AutoEvalColumn)], select_columns=SelectColumns( default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], label="Select Columns to Display:", ), search_columns=[AutoEvalColumn.result_name.name,AutoEvalColumn.eval_name.name], hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], filter_columns=[], bool_checkboxgroup_label="Hide models", interactive=False, ) def greet_user(profile: gr.OAuthProfile | None): if profile is None: return "⚠️ You are not logged in." return f"👋 Hello, **{profile.username}**!" demo = gr.Blocks(css=custom_css) with demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") with gr.Tabs(elem_classes="tab-buttons") as tabs: with gr.TabItem("🏅 GridNet-HD Benchmark", elem_id="benchmark-tab-table", id=0): leaderboard = init_leaderboard(LEADERBOARD_DF) def reload_leaderboard(): # Reload dataframe print("reload_leaderboard") df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS) return df # Load on app start or page refresh demo.load( fn=reload_leaderboard, inputs=[], outputs=[leaderboard] ) with gr.TabItem("📝 About", elem_id="benchmark-tab-table", id=2): gr.Markdown(BENCHMARKS_TEXT, elem_classes="markdown-text") with gr.TabItem("🚀 Submit here! ", elem_id="benchmark-tab-table", id=3): with gr.Column(): with gr.Row(): gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") with gr.Row(): gr.Markdown("# ✉️✨ Submit your result here!", elem_classes="markdown-text") with gr.Row(): gr.LoginButton() with gr.Row(): with gr.Column(): greeting = gr.Markdown() demo.load(fn=greet_user, inputs=None, outputs=greeting) # user_name_textbox = gr.Textbox(label="User name") result_name_textbox = gr.Textbox(label="Result name") npz_files_input = gr.File(label="Upload NPZ files", file_types=[".npz"], file_count="multiple") remap = gr.Checkbox(label="Remap classes : check it if you upload original classes (evaluation will only be done on mapped classes.)", value=False) submit_button = gr.Button("Submit Eval") submission_result = gr.Markdown() submit_button.click( add_new_eval, [ # user_name_textbox, result_name_textbox, npz_files_input, remap ], submission_result, ) with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, lines=20, elem_id="citation-button", show_copy_button=True, ) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=1800) scheduler.start() demo.queue(default_concurrency_limit=40).launch()