docling_free / api.py
hellorahulk's picture
[Cursor] Simplify Python handler for Vercel
8b5c234
raw
history blame
6.58 kB
import os
from fastapi import FastAPI, HTTPException, UploadFile, File, BackgroundTasks
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, HttpUrl
import tempfile
import requests
from typing import Optional, List, Dict, Any
from dockling_parser import DocumentParser
from dockling_parser.exceptions import ParserError, UnsupportedFormatError
from dockling_parser.types import ParsedDocument
import logging
import aiofiles
import asyncio
from urllib.parse import urlparse
from mangum import Mangum
import httpx
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize FastAPI app
app = FastAPI(
title="Document Parser API",
description="A scalable API for parsing various document formats",
version="1.0.0"
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Initialize document parser
parser = DocumentParser()
class URLInput(BaseModel):
url: HttpUrl
callback_url: Optional[HttpUrl] = None
class ErrorResponse(BaseModel):
error: str
detail: Optional[str] = None
code: str
class ParseResponse(BaseModel):
job_id: str
status: str
result: Optional[ParsedDocument] = None
error: Optional[str] = None
# In-memory job storage (replace with Redis/DB in production)
jobs = {}
async def process_document_async(job_id: str, file_path: str, callback_url: Optional[str] = None):
"""Process document asynchronously"""
try:
# Update job status
jobs[job_id] = {"status": "processing"}
# Parse document
result = parser.parse(file_path)
# Update job with result
jobs[job_id] = {
"status": "completed",
"result": result
}
# Call callback URL if provided
if callback_url:
try:
await notify_callback(callback_url, job_id, result)
except Exception as e:
logger.error(f"Failed to notify callback URL: {str(e)}")
except Exception as e:
logger.error(f"Error processing document: {str(e)}")
jobs[job_id] = {
"status": "failed",
"error": str(e)
}
finally:
# Cleanup temporary file
try:
if os.path.exists(file_path):
os.unlink(file_path)
except Exception as e:
logger.error(f"Error cleaning up file: {str(e)}")
async def notify_callback(callback_url: str, job_id: str, result: ParsedDocument):
"""Notify callback URL with results"""
try:
async with httpx.AsyncClient() as client:
await client.post(
callback_url,
json={
"job_id": job_id,
"result": result.dict()
}
)
except Exception as e:
logger.error(f"Failed to send callback: {str(e)}")
@app.post("/parse/file", response_model=ParseResponse)
async def parse_file(
background_tasks: BackgroundTasks,
file: UploadFile = File(...),
callback_url: Optional[HttpUrl] = None
):
"""
Parse a document from file upload
"""
try:
# Create temporary file in /tmp for Vercel
suffix = os.path.splitext(file.filename)[1]
tmp_dir = "/tmp" if os.path.exists("/tmp") else tempfile.gettempdir()
tmp_path = os.path.join(tmp_dir, f"upload_{os.urandom(8).hex()}{suffix}")
content = await file.read()
with open(tmp_path, "wb") as f:
f.write(content)
# Generate job ID
job_id = f"job_{len(jobs) + 1}"
# Start background processing
background_tasks.add_task(
process_document_async,
job_id,
tmp_path,
str(callback_url) if callback_url else None
)
return ParseResponse(
job_id=job_id,
status="queued"
)
except Exception as e:
logger.error(f"Error handling file upload: {str(e)}")
raise HTTPException(
status_code=500,
detail=str(e)
)
@app.post("/parse/url", response_model=ParseResponse)
async def parse_url(input_data: URLInput, background_tasks: BackgroundTasks):
"""
Parse a document from URL
"""
try:
# Download file
async with httpx.AsyncClient() as client:
response = await client.get(str(input_data.url), follow_redirects=True)
response.raise_for_status()
# Get filename from URL or use default
filename = os.path.basename(urlparse(str(input_data.url)).path)
if not filename:
filename = "document.pdf"
# Save to temporary file in /tmp for Vercel
tmp_dir = "/tmp" if os.path.exists("/tmp") else tempfile.gettempdir()
tmp_path = os.path.join(tmp_dir, f"download_{os.urandom(8).hex()}{os.path.splitext(filename)[1]}")
with open(tmp_path, "wb") as f:
f.write(response.content)
# Generate job ID
job_id = f"job_{len(jobs) + 1}"
# Start background processing
background_tasks.add_task(
process_document_async,
job_id,
tmp_path,
str(input_data.callback_url) if input_data.callback_url else None
)
return ParseResponse(
job_id=job_id,
status="queued"
)
except httpx.RequestError as e:
logger.error(f"Error downloading file: {str(e)}")
raise HTTPException(
status_code=400,
detail=f"Error downloading file: {str(e)}"
)
except Exception as e:
logger.error(f"Error processing URL: {str(e)}")
raise HTTPException(
status_code=500,
detail=str(e)
)
@app.get("/status/{job_id}", response_model=ParseResponse)
async def get_status(job_id: str):
"""
Get the status of a parsing job
"""
if job_id not in jobs:
raise HTTPException(
status_code=404,
detail="Job not found"
)
job = jobs[job_id]
return ParseResponse(
job_id=job_id,
status=job["status"],
result=job.get("result"),
error=job.get("error")
)
@app.get("/health")
async def health_check():
"""
Health check endpoint
"""
return {"status": "healthy"}
# Handler for Vercel
handler = Mangum(app, lifespan="off")