|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import warnings |
|
from typing import Any, List, Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge |
|
|
|
|
|
class BoneLayer(BaseTunerLayer): |
|
|
|
adapter_layer_names = ("bone_block",) |
|
|
|
other_param_names = ("bone_r",) |
|
|
|
def __init__(self, base_layer: nn.Module, **kwargs) -> None: |
|
self.base_layer = base_layer |
|
self.bone_r = {} |
|
self.bone_block = nn.ParameterDict({}) |
|
|
|
self._disable_adapters = False |
|
self.merged_adapters = [] |
|
self.kwargs = kwargs |
|
|
|
base_layer = self.get_base_layer() |
|
if isinstance(base_layer, nn.Linear): |
|
self.in_features, self.out_features = base_layer.in_features, base_layer.out_features |
|
else: |
|
raise ValueError(f"Unsupported layer type {type(base_layer)}") |
|
|
|
def update_layer( |
|
self, |
|
adapter_name: str, |
|
r: int, |
|
init_weights: bool, |
|
**kwargs, |
|
) -> None: |
|
"""Internal function to create bone adapter |
|
|
|
Args: |
|
adapter_name (`str`): Name for the adapter to add. |
|
r (`int`): Rank for the added adapter. |
|
init_weights (`bool`): Whether to initialize weights. |
|
""" |
|
if r <= 0: |
|
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") |
|
|
|
self.bone_r[adapter_name] = r |
|
|
|
|
|
base_layer = self.get_base_layer() |
|
if isinstance(base_layer, nn.Linear): |
|
self.bone_block[adapter_name] = nn.Parameter(torch.zeros(r, self.out_features), requires_grad=True) |
|
|
|
else: |
|
raise TypeError(f"Bone is not implemented for base layers of type {type(base_layer).__name__}") |
|
|
|
|
|
if init_weights == "bat": |
|
if self.in_features % r != 0 or self.out_features % r != 0: |
|
raise ValueError("The weight matrix must be fully divisible into [r, r] blocks.") |
|
self.reset_bat_parameters(adapter_name, r) |
|
elif init_weights: |
|
self.reset_bone_parameters(adapter_name, r) |
|
else: |
|
self.reset_bone_parameters_random(adapter_name) |
|
|
|
self._move_adapter_to_device_of_base_layer(adapter_name) |
|
self.set_adapter(self.active_adapters) |
|
|
|
def reset_bone_parameters(self, adapter_name: str, r): |
|
self.bone_block[adapter_name] = nn.Parameter(torch.zeros(r, self.out_features), requires_grad=True) |
|
|
|
def reset_bat_parameters(self, adapter_name: str, r): |
|
self.bone_block[adapter_name] = nn.Parameter(torch.zeros(self.out_features // r, r, r), requires_grad=True) |
|
|
|
def reset_bone_parameters_random(self, adapter_name: str): |
|
nn.init.kaiming_uniform_(self.bone_block[adapter_name], a=math.sqrt(5)) |
|
|
|
def scale_layer(self, scale: float) -> None: |
|
if scale == 1: |
|
return |
|
|
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.bone_block.keys(): |
|
continue |
|
|
|
warnings.warn("Scaling operation for Bone not supported! Automatically set scale to 1.") |
|
|
|
def unscale_layer(self, scale=None) -> None: |
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.bone_block.keys(): |
|
continue |
|
|
|
warnings.warn("Unscaling operation for Bone not supported! Keeping scale at 1.") |
|
|
|
|
|
class BoneLinear(nn.Module, BoneLayer): |
|
""" |
|
Bone implemented in a dense layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
base_layer, |
|
adapter_name: str, |
|
r: int = 0, |
|
init_weights: Union[bool, str] = True, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
BoneLayer.__init__(self, base_layer, **kwargs) |
|
self._active_adapter = adapter_name |
|
self.update_layer(adapter_name, r, init_weights, **kwargs) |
|
self.bone_fn = init_weights |
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: |
|
""" |
|
Merge the active adapter weights into the base weights |
|
|
|
Args: |
|
safe_merge (`bool`, *optional*): |
|
If `True`, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
NaNs. Defaults to `False`. |
|
adapter_names (`List[str]`, *optional*): |
|
The list of adapter names that should be merged. If `None`, all active adapters will be merged. |
|
Defaults to `None`. |
|
""" |
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
if not adapter_names: |
|
|
|
return |
|
|
|
for active_adapter in adapter_names: |
|
if active_adapter in self.bone_block.keys(): |
|
base_layer = self.get_base_layer() |
|
if safe_merge: |
|
|
|
|
|
orig_weight = base_layer.weight.data.clone() |
|
if self.bone_fn == "bat": |
|
delta_weight = self.get_delta_weight(active_adapter, orig_weight) |
|
orig_weight += delta_weight |
|
else: |
|
delta_weight = self.get_delta_weight_bone(active_adapter, self.base_layer.weight.data) |
|
orig_weight = delta_weight |
|
|
|
if not torch.isfinite(orig_weight).all(): |
|
raise ValueError( |
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
) |
|
|
|
self.base_layer.weight.data = orig_weight |
|
else: |
|
if self.bone_fn == "bat": |
|
delta_weight = self.get_delta_weight(active_adapter, self.base_layer.weight.data) |
|
self.base_layer.weight.data += delta_weight |
|
else: |
|
delta_weight = self.get_delta_weight_bone(active_adapter, self.base_layer.weight.data) |
|
self.base_layer.weight.data = delta_weight |
|
self.merged_adapters.append(active_adapter) |
|
|
|
def unmerge(self) -> None: |
|
""" |
|
This method unmerges all merged adapter layers from the base weights. |
|
""" |
|
if not self.merged: |
|
warnings.warn("Already unmerged. Nothing to do.") |
|
return |
|
while len(self.merged_adapters) > 0: |
|
active_adapter = self.merged_adapters.pop() |
|
if active_adapter in self.bone_block.keys(): |
|
orig_weight = self.get_base_layer().weight.data.clone() |
|
if self.bone_fn == "bat": |
|
delta_weight = self.get_delta_weight(active_adapter, orig_weight, re=True) |
|
else: |
|
delta_weight = self.get_delta_weight_bone(active_adapter, orig_weight, re=True) |
|
|
|
self.get_base_layer().weight.data = delta_weight |
|
|
|
def get_delta_weight(self, adapter, orig_weight, re: bool = False) -> torch.Tensor: |
|
""" |
|
Compute the delta weight for the given adapter. |
|
|
|
Args: |
|
adapter (str): |
|
The name of the adapter for which the delta weight should be computed. |
|
""" |
|
device = self.bone_block[adapter].device |
|
dtype = self.bone_block[adapter].dtype |
|
|
|
|
|
|
|
cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) |
|
|
|
weight_bone = self.bone_block[adapter] |
|
|
|
if cast_to_fp32: |
|
weight_bone = weight_bone.float() |
|
|
|
r = weight_bone.size(-1) |
|
if re: |
|
o = orig_weight.reshape(orig_weight.size(0) // r, r, orig_weight.size(1) // r, r).permute(2, 0, 1, 3) |
|
one = torch.eye(weight_bone.size(-1)).to(weight_bone.device) |
|
inv_I_plus_b = torch.inverse(one + weight_bone) |
|
w = (o - weight_bone) @ inv_I_plus_b |
|
output_tensor = w.permute(1, 2, 0, 3).reshape(*orig_weight.shape) |
|
else: |
|
w = ( |
|
orig_weight.reshape(orig_weight.size(0) // r, r, orig_weight.size(1) // r, r).permute(2, 0, 1, 3) |
|
@ weight_bone |
|
+ weight_bone |
|
) |
|
output_tensor = w.permute(1, 2, 0, 3).reshape(*orig_weight.shape) |
|
|
|
if cast_to_fp32: |
|
output_tensor = output_tensor.to(dtype=dtype) |
|
|
|
|
|
self.bone_block[adapter].data = weight_bone.to(dtype) |
|
|
|
return output_tensor |
|
|
|
def get_delta_weight_bone(self, adapter, orig_weight, re: bool = False) -> torch.Tensor: |
|
""" |
|
Compute the delta weight for the given adapter. |
|
|
|
Args: |
|
adapter (str): |
|
The name of the adapter for which the delta weight should be computed. |
|
""" |
|
device = self.bone_block[adapter].device |
|
dtype = self.bone_block[adapter].dtype |
|
|
|
|
|
|
|
cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16) |
|
|
|
weight_bone = self.bone_block[adapter] |
|
|
|
if cast_to_fp32: |
|
weight_bone = weight_bone.float() |
|
|
|
in_features = orig_weight.size(-1) |
|
r = weight_bone.size(0) |
|
if in_features % r != 0: |
|
last_size = in_features % r |
|
n_block = in_features // r |
|
n_block_size = n_block * r |
|
|
|
if re: |
|
orig_weight[:, :n_block_size] = ( |
|
(orig_weight[:, :n_block_size].reshape(-1, n_block, r).permute(1, 2, 0) - weight_bone) |
|
.permute(2, 0, 1) |
|
.reshape(*orig_weight[:, :n_block_size].shape) |
|
) |
|
orig_weight[:, n_block_size:] = ( |
|
orig_weight[:, n_block_size:] - (weight_bone.transpose(0, 1))[:, :last_size] |
|
) |
|
else: |
|
orig_weight[:, :n_block_size] = ( |
|
(orig_weight[:, :n_block_size].reshape(-1, n_block, r).permute(1, 2, 0) + weight_bone) |
|
.permute(2, 0, 1) |
|
.reshape(*orig_weight[:, :n_block_size].shape) |
|
) |
|
orig_weight[:, n_block_size:] = ( |
|
orig_weight[:, n_block_size:] + (weight_bone.transpose(0, 1))[:, :last_size] |
|
) |
|
output_tensor = orig_weight |
|
|
|
else: |
|
if re: |
|
w = orig_weight.reshape(-1, orig_weight.size(1) // r, r).permute(1, 2, 0) - weight_bone |
|
output_tensor = w.permute(2, 0, 1).reshape(*orig_weight.shape) |
|
else: |
|
w = orig_weight.reshape(-1, orig_weight.size(1) // r, r).permute(1, 2, 0) + weight_bone |
|
output_tensor = w.permute(2, 0, 1).reshape(*orig_weight.shape) |
|
|
|
if cast_to_fp32: |
|
output_tensor = output_tensor.to(dtype=dtype) |
|
|
|
|
|
self.bone_block[adapter].data = weight_bone.to(dtype) |
|
|
|
return output_tensor |
|
|
|
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor: |
|
previous_dtype = x.dtype |
|
|
|
if self.disable_adapters: |
|
if self.merged: |
|
self.unmerge() |
|
result = self.base_layer(x, *args, **kwargs) |
|
elif self.merged: |
|
result = self.base_layer(x, *args, **kwargs) |
|
else: |
|
if self.bone_fn == "bat": |
|
orig_weight = self.base_layer.weight.data.clone() |
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.bone_block.keys(): |
|
continue |
|
delta_weight = self.get_delta_weight(active_adapter, orig_weight) |
|
orig_weight = orig_weight + delta_weight |
|
|
|
result = F.linear(input=x, weight=orig_weight, bias=self.base_layer.bias) |
|
else: |
|
result = self.base_layer(x, *args, **kwargs) |
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.bone_block.keys(): |
|
continue |
|
bone = self.bone_block[active_adapter] |
|
r = bone.size(0) |
|
if x.size(-1) % r != 0: |
|
padding_size = (r - x.size(-1) % r) % r |
|
x = F.pad(x, (0, padding_size)) |
|
result = result + torch.sum(x.reshape(*x.shape[:-1], x.size(-1) // r, r), dim=-2) @ bone |
|
|
|
result = result.to(previous_dtype) |
|
return result |
|
|
|
def __repr__(self) -> str: |
|
rep = super().__repr__() |
|
return "bone." + rep |
|
|