|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
from dataclasses import dataclass, field |
|
from typing import Optional, Union |
|
|
|
from peft.config import PeftConfig |
|
from peft.utils import PeftType |
|
|
|
|
|
@dataclass |
|
class LNTuningConfig(PeftConfig): |
|
""" |
|
This is the configuration class to store the configuration of a :class:`~peft.tuners.LNTuningModel`. |
|
|
|
Args: |
|
target_modules (`Optional[Union[List[str], str]]`): |
|
List of module names or regex expression of the module names to replace with LNTuning. For example, |
|
'.*decoder.*' or '.*encoder.*'. If this is not specified, modules will be chosen according to the model |
|
architecture. If the architecture is not known, an error will be raised -- in this case, you should specify |
|
the target modules manually. |
|
exclude_modules (`Optional[Union[List[str], str]]`): |
|
The names of the modules to not apply the adapter. When passing a string, a regex match will be performed. |
|
When passing a list of strings, either an exact match will be performed or it is checked if the name of the |
|
module ends with any of the passed strings. |
|
modules_to_save (`Optional[Union[List[str], str]]`): |
|
List of modules to be set as trainable and saved in the final checkpoint. For example, in Sequence |
|
Classification or Token Classification tasks, the final layer `classifier/score` are randomly initialized |
|
and as such need to be trainable and saved. |
|
""" |
|
|
|
target_modules: Optional[Union[list[str], str]] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"List of module names or regex expression of the module names to replace with LNTuning." |
|
"For example, '.*decoder.*' or '.*encoder.*'. " |
|
"If not specified, modules will be chosen according to the model architecture, If the architecture is " |
|
"not known, an error will be raised -- in this case, you shoud specify the target modules manually." |
|
), |
|
}, |
|
) |
|
exclude_modules: Optional[Union[list[str], str]] = field( |
|
default=None, |
|
metadata={"help": "List of module names or regex expression of the module names to exclude from LNTuning."}, |
|
) |
|
modules_to_save: Optional[Union[list[str], str]] = field( |
|
default=None, |
|
metadata={ |
|
"help": "List of modules to be set as trainable and saved in the final checkpoint. " |
|
"For example, in Sequence Classification or Token Classification tasks, " |
|
"the final layer `classifier/score` are randomly initialized and as such need to be trainable and saved." |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
super().__post_init__() |
|
self.peft_type = PeftType.LN_TUNING |
|
|