|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from copy import deepcopy |
|
from typing import List, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge |
|
|
|
|
|
class LNTuningLayer(nn.Module, BaseTunerLayer): |
|
""" |
|
Selects a layer from the model. |
|
""" |
|
|
|
adapter_layer_names = ("ln_tuning_layers",) |
|
|
|
def __init__(self, base_layer: nn.Module, adapter_name: str): |
|
super().__init__() |
|
self.base_layer = base_layer |
|
self.ln_tuning_layers = nn.ModuleDict({}) |
|
self.update_layer(self.base_layer, adapter_name) |
|
self._active_adapter = adapter_name |
|
self.merged_adapters = [] |
|
|
|
def update_layer(self, layer: nn.Module, adapter_name: str): |
|
self.ln_tuning_layers[adapter_name] = deepcopy(layer) |
|
|
|
def enable_adapters(self, enabled: bool) -> None: |
|
"""Toggle the enabling and disabling of adapters |
|
|
|
Takes care of setting the requires_grad flag for the adapter weights. |
|
|
|
Args: |
|
enabled (bool): True to enable adapters, False to disable adapters |
|
""" |
|
if enabled: |
|
self.set_adapter(self.active_adapters) |
|
self._disable_adapters = False |
|
else: |
|
if self.merged: |
|
self.unmerge() |
|
|
|
for layer_name in self.adapter_layer_names: |
|
layer = getattr(self, layer_name) |
|
layer.requires_grad_(False) |
|
self._disable_adapters = True |
|
|
|
def merge(self, adapter_names: Optional[List[str]] = None): |
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
if not adapter_names: |
|
|
|
return |
|
|
|
if len(adapter_names) > 1: |
|
raise ValueError( |
|
f"Trying to merge {len(adapter_names)} adapters, but LN " |
|
f"tuning does not allow merging more than one adapter at a time" |
|
) |
|
merged_adapters = set(self.merged_adapters) |
|
if merged_adapters: |
|
warnings.warn(f"Already merged with {merged_adapters}. Unmerging first.") |
|
self.unmerge() |
|
|
|
self.base_layer, self.ln_tuning_layers[adapter_names[0]] = ( |
|
self.ln_tuning_layers[adapter_names[0]], |
|
self.base_layer, |
|
) |
|
self.merged_adapters.append(adapter_names[0]) |
|
|
|
def unmerge(self): |
|
if not self.merged: |
|
warnings.warn("Already unmerged. Nothing to do.") |
|
return |
|
|
|
|
|
merged_name = self.merged_adapters.pop() |
|
self.base_layer, self.ln_tuning_layers[merged_name] = ( |
|
self.ln_tuning_layers[merged_name], |
|
self.base_layer, |
|
) |
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
if self.disable_adapters: |
|
if self.merged: |
|
self.unmerge() |
|
result = self.base_layer(x, *args, **kwargs) |
|
elif self.merged: |
|
result = self.base_layer(x, *args, **kwargs) |
|
else: |
|
if len(self.active_adapters) != 1: |
|
raise ValueError( |
|
f"Trying to run forward with {len(self.active_adapters)} active " |
|
f"adapters, but LN tuning does not allow inference with more than one adapter at a time" |
|
) |
|
active_adapter = self.active_adapters[0] |
|
result = self.ln_tuning_layers[active_adapter](x, *args, **kwargs) |
|
|
|
return result |
|
|
|
def __repr__(self) -> str: |
|
rep = super().__repr__() |
|
return "ln_tuning." + rep |
|
|