|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import List, Optional, Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from transformers.pytorch_utils import Conv1D |
|
|
|
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge |
|
from peft.utils.other import transpose |
|
|
|
|
|
class VBLoRALayer(BaseTunerLayer): |
|
|
|
adapter_layer_names = ("vblora_logits_A", "vblora_logits_B", "vblora_vector_bank") |
|
|
|
def __init__(self, base_layer: nn.Module, **kwargs): |
|
self.base_layer = base_layer |
|
self.r = {} |
|
self.topk = {} |
|
self.vblora_dropout = nn.ModuleDict({}) |
|
|
|
|
|
self.vblora_logits_A = nn.ParameterDict({}) |
|
self.vblora_logits_B = nn.ParameterDict({}) |
|
|
|
|
|
self._disable_adapters = False |
|
self.merged_adapters = [] |
|
|
|
base_layer = self.get_base_layer() |
|
if isinstance(base_layer, nn.Linear): |
|
in_features, out_features = base_layer.in_features, base_layer.out_features |
|
elif isinstance(base_layer, Conv1D): |
|
in_features, out_features = ( |
|
base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape |
|
) |
|
|
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.kwargs = kwargs |
|
|
|
@property |
|
def merged(self) -> bool: |
|
return bool(self.merged_adapters) |
|
|
|
def update_layer( |
|
self, |
|
adapter_name: str, |
|
vblora_vector_bank, |
|
r: int, |
|
topk: int, |
|
num_vectors: int, |
|
vector_length: float, |
|
vblora_dropout: float = 0.0, |
|
init_logits_std: float = 0.01, |
|
): |
|
if r <= 0: |
|
raise ValueError(f"`r` {r} should be a positive integer value") |
|
if topk <= 0: |
|
raise ValueError(f"`topk` {topk} should be a positive integer value") |
|
|
|
if self.in_features % vector_length != 0: |
|
raise ValueError(f"`in_features` {self.in_features} must be divisible by `vector_length` {vector_length}") |
|
if self.out_features % vector_length != 0: |
|
raise ValueError( |
|
f"`out_features` {self.out_features} must be divisible by `vector_length` {vector_length}" |
|
) |
|
|
|
self.r[adapter_name] = r |
|
self.topk[adapter_name] = topk |
|
if vblora_dropout > 0.0: |
|
vblora_dropout_layer = nn.Dropout(p=vblora_dropout) |
|
else: |
|
vblora_dropout_layer = nn.Identity() |
|
self.vblora_dropout.update(nn.ModuleDict({adapter_name: vblora_dropout_layer})) |
|
self.vblora_logits_A[adapter_name] = nn.Parameter( |
|
torch.zeros(r, self.in_features // vector_length, num_vectors), requires_grad=True |
|
) |
|
self.vblora_logits_B[adapter_name] = nn.Parameter( |
|
torch.zeros(self.out_features // vector_length, r, num_vectors), requires_grad=True |
|
) |
|
self.vblora_vector_bank = vblora_vector_bank |
|
self.reset_vblora_logits(adapter_name, init_logits_std) |
|
self._move_adapter_to_device_of_base_layer(adapter_name) |
|
self.set_adapter(self.active_adapters) |
|
|
|
def reset_vblora_logits(self, adapter_name, init_logits_std): |
|
if adapter_name in self.vblora_logits_A.keys(): |
|
with torch.no_grad(): |
|
nn.init.normal_(self.vblora_logits_A[adapter_name], 0, init_logits_std) |
|
nn.init.normal_(self.vblora_logits_B[adapter_name], 0, init_logits_std) |
|
|
|
|
|
class Linear(nn.Linear, VBLoRALayer): |
|
|
|
def __init__( |
|
self, |
|
base_layer, |
|
vblora_vector_bank, |
|
adapter_name: str, |
|
r: int, |
|
num_vectors: int, |
|
vector_length: int, |
|
topk: int = 2, |
|
vblora_dropout: float = 0.0, |
|
init_logits_std: float = 0.01, |
|
fan_in_fan_out: bool = False, |
|
is_target_conv_1d_layer: bool = False, |
|
**kwargs, |
|
) -> None: |
|
|
|
super(nn.Linear, self).__init__() |
|
VBLoRALayer.__init__(self, base_layer, **kwargs) |
|
self.fan_in_fan_out = fan_in_fan_out |
|
self._active_adapter = adapter_name |
|
self.update_layer( |
|
adapter_name, vblora_vector_bank, r, topk, num_vectors, vector_length, vblora_dropout, init_logits_std |
|
) |
|
self.is_target_conv_1d_layer = is_target_conv_1d_layer |
|
|
|
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None: |
|
""" |
|
Merge the active adapter weights into the base weights |
|
|
|
Args: |
|
safe_merge (`bool`, *optional*): |
|
If True, the merge operation will be performed in a copy of the original weights and check for NaNs |
|
before merging the weights. This is useful if you want to check if the merge operation will produce |
|
NaNs. Defaults to `False`. |
|
adapter_names (`List[str]`, *optional*): |
|
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults |
|
to `None`. |
|
""" |
|
adapter_names = check_adapters_to_merge(self, adapter_names) |
|
if not adapter_names: |
|
|
|
return |
|
|
|
for active_adapter in adapter_names: |
|
if active_adapter in self.vblora_logits_A.keys(): |
|
base_layer = self.get_base_layer() |
|
if safe_merge: |
|
|
|
|
|
orig_weights = base_layer.weight.data.clone() |
|
orig_weights += self.get_delta_weight(active_adapter) |
|
if not torch.isfinite(orig_weights).all(): |
|
raise ValueError( |
|
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken" |
|
) |
|
base_layer.weight.data = orig_weights |
|
else: |
|
base_layer.weight.data += self.get_delta_weight(active_adapter) |
|
self.merged_adapters.append(active_adapter) |
|
|
|
def unmerge(self) -> None: |
|
if not self.merged: |
|
warnings.warn("Already unmerged. Nothing to do.") |
|
return |
|
|
|
while len(self.merged_adapters) > 0: |
|
active_adapter = self.merged_adapters.pop() |
|
if active_adapter in self.vblora_logits_A.keys(): |
|
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter) |
|
|
|
def _get_low_rank_matrix(self, logits: torch.tensor, vblora_vector_bank, topk) -> torch.Tensor: |
|
top_k_logits, indices = logits.topk(topk, dim=-1) |
|
topk_weights = F.softmax(top_k_logits, dim=-1) |
|
return (topk_weights.unsqueeze(-1) * vblora_vector_bank[indices]).sum(-2) |
|
|
|
def _get_lora_matrices(self, adapter, cast_to_fp32=False) -> Tuple[torch.Tensor, torch.Tensor]: |
|
vblora_logits_A = self.vblora_logits_A[adapter] |
|
vblora_logits_B = self.vblora_logits_B[adapter] |
|
|
|
|
|
if self.training and vblora_logits_A[0, 0].isinf().any(): |
|
raise RuntimeError( |
|
"Found infinity values in VB-LoRA logits. Ensure training was not resumed from a `save_only_topk_weights` model." |
|
) |
|
|
|
vblora_vector_bank = self.vblora_vector_bank[adapter].to(vblora_logits_A.device) |
|
topk = self.topk[adapter] |
|
|
|
|
|
|
|
if cast_to_fp32: |
|
vblora_logits_A = vblora_logits_A.float() |
|
vblora_logits_B = vblora_logits_B.float() |
|
vblora_vector_bank = vblora_vector_bank.float() |
|
|
|
|
|
A = self._get_low_rank_matrix(vblora_logits_A, vblora_vector_bank, topk).reshape(vblora_logits_A.shape[0], -1) |
|
|
|
B = ( |
|
self._get_low_rank_matrix(vblora_logits_B, vblora_vector_bank, topk) |
|
.transpose(1, 2) |
|
.reshape(-1, vblora_logits_B.shape[1]) |
|
) |
|
return A, B |
|
|
|
def get_delta_weight(self, adapter) -> torch.Tensor: |
|
""" |
|
Compute the delta weight for the given adapter. |
|
|
|
Args: |
|
adapter (str): |
|
The name of the adapter for which the delta weight should be computed. |
|
""" |
|
device = self.vblora_logits_A[adapter].device |
|
dtype = self.vblora_logits_A[adapter].dtype |
|
cast_to_fp32 = device.type == "cpu" and dtype == torch.float16 |
|
A, B = self._get_lora_matrices(adapter, cast_to_fp32) |
|
output_tensor = transpose(B @ A, self.fan_in_fan_out) |
|
return output_tensor |
|
|
|
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: |
|
previous_dtype = x.dtype |
|
if self.disable_adapters: |
|
if self.merged: |
|
self.unmerge() |
|
result = self.base_layer(x, *args, **kwargs) |
|
elif self.merged: |
|
result = self.base_layer(x, *args, **kwargs) |
|
else: |
|
result = self.base_layer(x, *args, **kwargs) |
|
for active_adapter in self.active_adapters: |
|
if active_adapter not in self.vblora_logits_A.keys(): |
|
continue |
|
A, B = self._get_lora_matrices(active_adapter) |
|
x = x.to(self.vblora_vector_bank[active_adapter].dtype) |
|
dropout = self.vblora_dropout[active_adapter] |
|
result = result + F.linear(F.linear(dropout(x), A), B) |
|
result = result.to(previous_dtype) |
|
return result |
|
|