RiverZ's picture
upd
3b609b9
# Copyright 2024-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import Conv1D
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils.other import transpose
class VBLoRALayer(BaseTunerLayer):
# List all names of layers that may contain adapter weights
adapter_layer_names = ("vblora_logits_A", "vblora_logits_B", "vblora_vector_bank")
def __init__(self, base_layer: nn.Module, **kwargs):
self.base_layer = base_layer
self.r = {}
self.topk = {}
self.vblora_dropout = nn.ModuleDict({})
# For storing vector scale
self.vblora_logits_A = nn.ParameterDict({})
self.vblora_logits_B = nn.ParameterDict({})
# Mark the weight as unmerged
self._disable_adapters = False
self.merged_adapters = []
base_layer = self.get_base_layer()
if isinstance(base_layer, nn.Linear):
in_features, out_features = base_layer.in_features, base_layer.out_features
elif isinstance(base_layer, Conv1D):
in_features, out_features = (
base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
)
self.in_features = in_features
self.out_features = out_features
self.kwargs = kwargs
@property
def merged(self) -> bool:
return bool(self.merged_adapters)
def update_layer(
self,
adapter_name: str,
vblora_vector_bank,
r: int,
topk: int,
num_vectors: int,
vector_length: float,
vblora_dropout: float = 0.0,
init_logits_std: float = 0.01,
):
if r <= 0:
raise ValueError(f"`r` {r} should be a positive integer value")
if topk <= 0:
raise ValueError(f"`topk` {topk} should be a positive integer value")
if self.in_features % vector_length != 0:
raise ValueError(f"`in_features` {self.in_features} must be divisible by `vector_length` {vector_length}")
if self.out_features % vector_length != 0:
raise ValueError(
f"`out_features` {self.out_features} must be divisible by `vector_length` {vector_length}"
)
self.r[adapter_name] = r
self.topk[adapter_name] = topk
if vblora_dropout > 0.0:
vblora_dropout_layer = nn.Dropout(p=vblora_dropout)
else:
vblora_dropout_layer = nn.Identity()
self.vblora_dropout.update(nn.ModuleDict({adapter_name: vblora_dropout_layer}))
self.vblora_logits_A[adapter_name] = nn.Parameter(
torch.zeros(r, self.in_features // vector_length, num_vectors), requires_grad=True
)
self.vblora_logits_B[adapter_name] = nn.Parameter(
torch.zeros(self.out_features // vector_length, r, num_vectors), requires_grad=True
)
self.vblora_vector_bank = vblora_vector_bank
self.reset_vblora_logits(adapter_name, init_logits_std)
self._move_adapter_to_device_of_base_layer(adapter_name)
self.set_adapter(self.active_adapters)
def reset_vblora_logits(self, adapter_name, init_logits_std):
if adapter_name in self.vblora_logits_A.keys():
with torch.no_grad():
nn.init.normal_(self.vblora_logits_A[adapter_name], 0, init_logits_std)
nn.init.normal_(self.vblora_logits_B[adapter_name], 0, init_logits_std)
class Linear(nn.Linear, VBLoRALayer):
# VBLoRA implemented in a dense layer
def __init__(
self,
base_layer,
vblora_vector_bank,
adapter_name: str,
r: int,
num_vectors: int,
vector_length: int,
topk: int = 2,
vblora_dropout: float = 0.0,
init_logits_std: float = 0.01,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
is_target_conv_1d_layer: bool = False,
**kwargs,
) -> None:
# this gets the init from nn.Linear's super perspective, i.e. nn.Module.__init__, which should always be called
super(nn.Linear, self).__init__()
VBLoRALayer.__init__(self, base_layer, **kwargs)
self.fan_in_fan_out = fan_in_fan_out
self._active_adapter = adapter_name
self.update_layer(
adapter_name, vblora_vector_bank, r, topk, num_vectors, vector_length, vblora_dropout, init_logits_std
)
self.is_target_conv_1d_layer = is_target_conv_1d_layer
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter in self.vblora_logits_A.keys():
base_layer = self.get_base_layer()
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weights = base_layer.weight.data.clone()
orig_weights += self.get_delta_weight(active_adapter)
if not torch.isfinite(orig_weights).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
base_layer.weight.data = orig_weights
else:
base_layer.weight.data += self.get_delta_weight(active_adapter)
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.vblora_logits_A.keys():
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)
def _get_low_rank_matrix(self, logits: torch.tensor, vblora_vector_bank, topk) -> torch.Tensor:
top_k_logits, indices = logits.topk(topk, dim=-1)
topk_weights = F.softmax(top_k_logits, dim=-1)
return (topk_weights.unsqueeze(-1) * vblora_vector_bank[indices]).sum(-2)
def _get_lora_matrices(self, adapter, cast_to_fp32=False) -> Tuple[torch.Tensor, torch.Tensor]:
vblora_logits_A = self.vblora_logits_A[adapter]
vblora_logits_B = self.vblora_logits_B[adapter]
# Check for infinity values when training. If found, training was likely resumed from a `save_only_topk_weights` model.
if self.training and vblora_logits_A[0, 0].isinf().any():
raise RuntimeError(
"Found infinity values in VB-LoRA logits. Ensure training was not resumed from a `save_only_topk_weights` model."
)
vblora_vector_bank = self.vblora_vector_bank[adapter].to(vblora_logits_A.device)
topk = self.topk[adapter]
# In case users wants to merge the adapter weights that are in
# float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
# float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
if cast_to_fp32:
vblora_logits_A = vblora_logits_A.float()
vblora_logits_B = vblora_logits_B.float()
vblora_vector_bank = vblora_vector_bank.float()
# A: (rank, in_tile, vector_length) -> (rank, in_tile x vector_length)
A = self._get_low_rank_matrix(vblora_logits_A, vblora_vector_bank, topk).reshape(vblora_logits_A.shape[0], -1)
# B: (out_tile, rank, vector_length) -> (out_tile, vector_length, rank) -> (out_tile x vector_length, rank)
B = (
self._get_low_rank_matrix(vblora_logits_B, vblora_vector_bank, topk)
.transpose(1, 2)
.reshape(-1, vblora_logits_B.shape[1])
)
return A, B
def get_delta_weight(self, adapter) -> torch.Tensor:
"""
Compute the delta weight for the given adapter.
Args:
adapter (str):
The name of the adapter for which the delta weight should be computed.
"""
device = self.vblora_logits_A[adapter].device
dtype = self.vblora_logits_A[adapter].dtype
cast_to_fp32 = device.type == "cpu" and dtype == torch.float16
A, B = self._get_lora_matrices(adapter, cast_to_fp32)
output_tensor = transpose(B @ A, self.fan_in_fan_out)
return output_tensor
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
for active_adapter in self.active_adapters:
if active_adapter not in self.vblora_logits_A.keys():
continue
A, B = self._get_lora_matrices(active_adapter)
x = x.to(self.vblora_vector_bank[active_adapter].dtype)
dropout = self.vblora_dropout[active_adapter]
result = result + F.linear(F.linear(dropout(x), A), B)
result = result.to(previous_dtype)
return result