|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
|
|
import warnings |
|
from dataclasses import asdict |
|
from enum import Enum |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
from tqdm import tqdm |
|
from transformers.pytorch_utils import Conv1D |
|
|
|
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists |
|
from peft.utils import TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING, ModulesToSaveWrapper, _get_submodules |
|
|
|
from .config import VBLoRAConfig |
|
from .layer import Linear, VBLoRALayer |
|
|
|
|
|
class VBLoRAModel(BaseTuner): |
|
""" |
|
Creates VBLoRA model from a pretrained transformers model. |
|
|
|
The method is described in detail in https://arxiv.org/abs/2405.15179. |
|
|
|
Args: |
|
model ([`~transformers.PreTrainedModel`]): The model to be adapted. |
|
config ([`VBLoRAConfig`]): The configuration of the VBLoRA model. |
|
adapter_name (`str`): The name of the adapter, defaults to `"default"`. |
|
low_cpu_mem_usage (`bool`, `optional`, defaults to `False`): |
|
Create empty adapter weights on meta device. Useful to speed up the loading process. |
|
|
|
Returns: |
|
`torch.nn.Module`: The VBLoRA model. |
|
|
|
Example: |
|
|
|
```py |
|
>>> from transformers import AutoModelForCausalLM |
|
>>> from peft import VBLoRAConfig, get_peft_model |
|
|
|
>>> base_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") |
|
>>> config = VBLoRAConfig( |
|
... task_type="SEQ_CLS", |
|
... r=4, |
|
... target_modules=["fc1", "fc2", "k_proj", "out_proj", "q_proj", "v_proj"], |
|
... num_vectors=60, |
|
... vector_length=256, |
|
... save_only_topk_weights=True, |
|
... ) |
|
>>> model = get_peft_model(base_model, config) |
|
``` |
|
|
|
**Attributes**: |
|
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted. |
|
- **peft_config** ([`VBLoRAConfig`]): The configuration of the VBLoRAConfig model. |
|
""" |
|
|
|
prefix: str = "vblora_" |
|
|
|
def __init__(self, model, config, adapter_name, low_cpu_mem_usage: bool = False) -> None: |
|
super().__init__(model, config, adapter_name, low_cpu_mem_usage=low_cpu_mem_usage) |
|
|
|
def _init_vblora_vector_bank(self, config: VBLoRAConfig, adapter_name: str) -> None: |
|
vblora_vector_bank = torch.zeros(config.num_vectors, config.vector_length) |
|
torch.nn.init.uniform_(vblora_vector_bank, -config.init_vector_bank_bound, config.init_vector_bank_bound) |
|
self.vblora_vector_bank[adapter_name] = vblora_vector_bank |
|
|
|
def _pre_injection_hook(self, model: nn.Module, config: VBLoRAConfig, adapter_name: str) -> None: |
|
self.vblora_vector_bank = nn.ParameterDict({}) |
|
|
|
def _check_new_adapter_config(self, config: VBLoRAConfig) -> None: |
|
""" |
|
A helper method to check the config when a new adapter is being added. |
|
|
|
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. |
|
|
|
""" |
|
|
|
|
|
|
|
if (len(self.peft_config) > 1) and (config.bias != "none"): |
|
raise ValueError( |
|
f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, " |
|
"set bias to 'none' for all adapters." |
|
) |
|
|
|
@staticmethod |
|
def _check_target_module_exists(vblora_config, key): |
|
return check_target_module_exists(vblora_config, key) |
|
|
|
def _create_and_replace( |
|
self, |
|
vblora_config, |
|
adapter_name, |
|
target, |
|
target_name, |
|
parent, |
|
current_key, |
|
): |
|
if current_key is None: |
|
raise ValueError("Current Key shouldn't be `None`") |
|
|
|
bias = hasattr(target, "bias") and target.bias is not None |
|
kwargs = { |
|
"fan_in_fan_out": vblora_config.fan_in_fan_out, |
|
"bias": bias, |
|
} |
|
self._init_vblora_vector_bank(vblora_config, adapter_name) |
|
|
|
|
|
if isinstance(target, Linear): |
|
target.update_layer( |
|
adapter_name=adapter_name, |
|
vblora_vector_bank=self.vblora_vector_bank, |
|
r=vblora_config.r, |
|
topk=vblora_config.topk, |
|
num_vectors=vblora_config.num_vectors, |
|
vector_length=vblora_config.vector_length, |
|
vblora_dropout=vblora_config.vblora_dropout, |
|
init_logits_std=vblora_config.init_logits_std, |
|
) |
|
else: |
|
new_module = self._create_new_module( |
|
vblora_config=vblora_config, |
|
vblora_vector_bank=self.vblora_vector_bank, |
|
adapter_name=adapter_name, |
|
target=target, |
|
**kwargs, |
|
) |
|
if adapter_name not in self.active_adapter: |
|
|
|
new_module.requires_grad_(False) |
|
self._replace_module(parent, target_name, new_module, target) |
|
|
|
@staticmethod |
|
def _replace_module(parent, child_name, new_module, child): |
|
setattr(parent, child_name, new_module) |
|
|
|
|
|
|
|
|
|
if hasattr(child, "base_layer"): |
|
child = child.base_layer |
|
|
|
if not hasattr(new_module, "base_layer"): |
|
new_module.weight = child.weight |
|
if hasattr(child, "bias"): |
|
new_module.bias = child.bias |
|
|
|
if getattr(child, "state", None) is not None: |
|
if hasattr(new_module, "base_layer"): |
|
new_module.base_layer.state = child.state |
|
else: |
|
new_module.state = child.state |
|
new_module.to(child.weight.device) |
|
|
|
meta = torch.device("meta") |
|
|
|
for name, module in new_module.named_modules(): |
|
if "vblora_" in name: |
|
if not any(p.device == meta for p in module.parameters()): |
|
module.to(child.weight.device) |
|
|
|
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: |
|
for n, p in model.named_parameters(): |
|
if self.prefix not in n: |
|
p.requires_grad = False |
|
|
|
for active_adapter in self.active_adapters: |
|
bias = self.peft_config[active_adapter].bias |
|
if bias == "none": |
|
continue |
|
if bias == "all": |
|
for n, p in model.named_parameters(): |
|
if "bias" in n: |
|
p.requires_grad = True |
|
elif bias == "vblora_only": |
|
for m in model.modules(): |
|
if isinstance(m, VBLoRALayer) and hasattr(m, "bias") and m.bias is not None: |
|
m.bias.requires_grad = True |
|
else: |
|
raise NotImplementedError(f"Requested bias: {bias}, is not implemented.") |
|
|
|
@staticmethod |
|
def _create_new_module(vblora_config, vblora_vector_bank, adapter_name, target, **kwargs): |
|
if isinstance(target, BaseTunerLayer): |
|
target_base_layer = target.get_base_layer() |
|
else: |
|
target_base_layer = target |
|
|
|
if isinstance(target_base_layer, torch.nn.Linear): |
|
if kwargs["fan_in_fan_out"]: |
|
warnings.warn( |
|
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. " |
|
"Setting fan_in_fan_out to False." |
|
) |
|
kwargs["fan_in_fan_out"] = vblora_config.fan_in_fan_out = False |
|
elif isinstance(target_base_layer, Conv1D): |
|
kwargs["is_target_conv_1d_layer"] = True |
|
if not kwargs["fan_in_fan_out"]: |
|
warnings.warn( |
|
"fan_in_fan_out is set to False but the target module is `Conv1D`. " |
|
"Setting fan_in_fan_out to True." |
|
) |
|
kwargs["fan_in_fan_out"] = vblora_config.fan_in_fan_out = True |
|
else: |
|
raise ValueError( |
|
f"Target module {target} is not supported. Currently, only the following modules are supported: " |
|
"`torch.nn.Linear`, `transformers.pytorch_utils.Conv1D`." |
|
) |
|
new_module = Linear( |
|
base_layer=target, |
|
vblora_vector_bank=vblora_vector_bank, |
|
adapter_name=adapter_name, |
|
r=vblora_config.r, |
|
num_vectors=vblora_config.num_vectors, |
|
vector_length=vblora_config.vector_length, |
|
topk=vblora_config.topk, |
|
vblora_dropout=vblora_config.vblora_dropout, |
|
init_logits_std=vblora_config.init_logits_std, |
|
**kwargs, |
|
) |
|
|
|
return new_module |
|
|
|
def __getattr__(self, name: str): |
|
"""Forward missing attributes to the wrapped module.""" |
|
try: |
|
return super().__getattr__(name) |
|
except AttributeError: |
|
if name == "model": |
|
raise |
|
return getattr(self.model, name) |
|
|
|
def get_peft_config_as_dict(self, inference: bool = False): |
|
config_dict = {} |
|
for key, value in self.peft_config.items(): |
|
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()} |
|
if inference: |
|
config["inference_mode"] = True |
|
config_dict[key] = config |
|
return config |
|
|
|
def _set_adapter_layers(self, enabled: bool = True) -> None: |
|
for module in self.model.modules(): |
|
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): |
|
module.enable_adapters(enabled) |
|
|
|
def enable_adapter_layers(self) -> None: |
|
"""Enable all adapters. |
|
|
|
Call this if you have previously disabled all adapters and want to re-enable them. |
|
""" |
|
self._set_adapter_layers(enabled=True) |
|
|
|
def disable_adapter_layers(self) -> None: |
|
"""Disable all adapters. |
|
|
|
When disabling all adapters, the model output corresponds to the output of the base model. |
|
""" |
|
for active_adapter in self.active_adapters: |
|
val = self.peft_config[active_adapter].bias |
|
if val != "none": |
|
msg = ( |
|
f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same " |
|
"output as the the base model would without adaption." |
|
) |
|
warnings.warn(msg) |
|
self._set_adapter_layers(enabled=False) |
|
|
|
def set_adapter(self, adapter_name: str | list[str]) -> None: |
|
"""Set the active adapter(s). |
|
|
|
Additionally, this function will set the specified adapters to trainable (i.e., requires_grad=True). If this is |
|
not desired, use the following code. |
|
|
|
```py |
|
>>> for name, param in model_peft.named_parameters(): |
|
... if ...: # some check on name (ex. if 'lora' in name) |
|
... param.requires_grad = False |
|
``` |
|
|
|
Args: |
|
adapter_name (`str` or `list[str]`): Name of the adapter(s) to be activated. |
|
""" |
|
for module in self.model.modules(): |
|
if isinstance(module, VBLoRALayer): |
|
if module.merged: |
|
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") |
|
module.unmerge() |
|
module.set_adapter(adapter_name) |
|
self.active_adapter = adapter_name |
|
|
|
@staticmethod |
|
def _prepare_adapter_config(peft_config, model_config): |
|
if peft_config.target_modules is None: |
|
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING: |
|
raise ValueError("Please specify `target_modules` in `peft_config`") |
|
peft_config.target_modules = set( |
|
TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING[model_config["model_type"]] |
|
) |
|
return peft_config |
|
|
|
def _unload_and_optionally_merge( |
|
self, |
|
merge=True, |
|
progressbar: bool = False, |
|
safe_merge: bool = False, |
|
adapter_names: Optional[list[str]] = None, |
|
): |
|
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key] |
|
desc = "Unloading " + ("and merging " if merge else "") + "model" |
|
for key in tqdm(key_list, disable=not progressbar, desc=desc): |
|
try: |
|
parent, target, target_name = _get_submodules(self.model, key) |
|
except AttributeError: |
|
continue |
|
|
|
if hasattr(target, "base_layer"): |
|
if merge: |
|
target.merge(safe_merge=safe_merge, adapter_names=adapter_names) |
|
|
|
self._replace_module(parent, target_name, target.get_base_layer(), target) |
|
elif isinstance(target, ModulesToSaveWrapper): |
|
|
|
setattr(parent, target_name, target.modules_to_save[target.active_adapter]) |
|
|
|
return self.model |
|
|
|
def delete_adapter(self, adapter_name: str) -> None: |
|
""" |
|
Deletes an existing adapter. |
|
|
|
Args: |
|
adapter_name (str): Name of the adapter to be deleted. |
|
""" |
|
if adapter_name not in list(self.peft_config.keys()): |
|
raise ValueError(f"Adapter {adapter_name} does not exist") |
|
del self.peft_config[adapter_name] |
|
|
|
key_list = [key for key, _ in self.model.named_modules() if self.prefix not in key] |
|
new_adapter = None |
|
for key in key_list: |
|
_, target, _ = _get_submodules(self.model, key) |
|
if isinstance(target, VBLoRALayer): |
|
target.delete_adapter(adapter_name) |
|
if new_adapter is None: |
|
new_adapter = target.active_adapter[:] |
|
|
|
self.active_adapter = new_adapter or [] |
|
|
|
def merge_and_unload( |
|
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None |
|
) -> torch.nn.Module: |
|
r""" |
|
This method merges the VBLoRA layers into the base model. This is needed if someone wants to use the base model |
|
as a standalone model. |
|
|
|
Args: |
|
progressbar (`bool`): |
|
whether to show a progressbar indicating the unload and merge process |
|
safe_merge (`bool`): |
|
whether to activate the safe merging check to check if there is any potential Nan in the adapter |
|
weights |
|
adapter_names (`list[str]`, *optional*): |
|
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults |
|
to `None`. |
|
|
|
Example: |
|
|
|
```py |
|
>>> from transformers import AutoModelForCausalLM |
|
>>> from peft import PeftModel |
|
|
|
>>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") |
|
>>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample" |
|
>>> model = PeftModel.from_pretrained(base_model, peft_model_id) |
|
>>> merged_model = model.merge_and_unload() |
|
``` |
|
""" |
|
return self._unload_and_optionally_merge( |
|
progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names |
|
) |
|
|
|
def unload(self): |
|
""" |
|
Gets back the base model by removing all the VBLoRA modules without merging. This gives back the original base |
|
model. |
|
""" |
|
return self._unload_and_optionally_merge(merge=False) |
|
|
|
def get_nb_savable_parameters(self, adapter="default") -> tuple[int, int]: |
|
r""" |
|
Returns the number of savable VB-LoRA parameters and other savable parameters. |
|
""" |
|
logits_params = 0 |
|
vector_bank_params = 0 |
|
other_params = 0 |
|
for name, param in self.named_parameters(): |
|
if "vblora_logits" in name: |
|
logits_params += param.numel() |
|
elif "vblora_vector_bank" in name: |
|
vector_bank_params += param.numel() |
|
elif param.requires_grad: |
|
other_params += param.numel() |
|
if self.peft_config[adapter].save_only_topk_weights: |
|
num_vectors = self.peft_config[adapter].num_vectors |
|
factor = 1 |
|
if num_vectors < 2**8: |
|
factor = 0.25 |
|
elif num_vectors < 2**15: |
|
factor = 0.5 |
|
elif num_vectors < 2**31: |
|
factor = 1 |
|
else: |
|
factor = 2 |
|
topk_weight_params = ( |
|
logits_params / self.peft_config[adapter].num_vectors * (self.peft_config[adapter].topk - 1) |
|
) |
|
topk_indices_params = ( |
|
logits_params / self.peft_config[adapter].num_vectors * self.peft_config[adapter].topk * factor |
|
) |
|
vblora_params = int(vector_bank_params + topk_weight_params + topk_indices_params) |
|
else: |
|
vblora_params = vector_bank_params + logits_params |
|
return vblora_params, other_params |
|
|
|
def print_savable_parameters(self) -> None: |
|
r""" |
|
Prints the number of savable VB-LoRA parameters and total savable parameters. |
|
""" |
|
vblora_params, other_params = self.get_nb_savable_parameters() |
|
print( |
|
f"VB-LoRA params to-be-saved (float32-equivalent): {vblora_params:,d} " |
|
f"|| total params to-be-saved: {(vblora_params + other_params):,d}" |
|
) |
|
|