import gradio as gr import transformers import librosa import torch import numpy as np # Load the Shuka model pipeline. pipe = transformers.pipeline( model="sarvamai/shuka_v1", trust_remote_code=True, device=0 if torch.cuda.is_available() else -1, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else None ) def process_audio(audio): """ Processes the input audio and returns a text response generated by the Shuka model. """ if audio is None: return "No audio provided. Please upload or record an audio file." try: # Gradio returns a tuple: (sample_rate, numpy_array) sample_rate, audio_data = audio except Exception as e: return f"Error processing audio input: {e}" if audio_data is None or len(audio_data) == 0: return "Audio data is empty. Please try again with a valid audio file." # Convert audio data to float if not already floating-point. if not np.issubdtype(audio_data.dtype, np.floating): audio_data = audio_data.astype(np.float32) # Resample to 16000 Hz if necessary. if sample_rate != 16000: try: audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000) sample_rate = 16000 except Exception as e: return f"Error during resampling: {e}" # Define conversation turns for the model. turns = [ {'role': 'system', 'content': 'Respond naturally and informatively.'}, {'role': 'user', 'content': '<|audio|>'} ] try: result = pipe({'audio': audio_data, 'turns': turns, 'sampling_rate': sample_rate}, max_new_tokens=512) except Exception as e: return f"Error during model processing: {e}" # Extract the generated text response. if isinstance(result, list) and len(result) > 0: response = result[0].get('generated_text', '') else: response = str(result) return response # Create the Gradio interface. iface = gr.Interface( fn=process_audio, inputs=gr.Audio(type="numpy"), # File upload for audio. outputs="text", title="Sarvam AI Shuka Voice Demo", description="Upload an audio file and get a response using Sarvam AI's Shuka model." ) if __name__ == "__main__": # Set share=True to create a public link, and specify a server port. iface.launch(share=True, server_port=7861)