import gradio as gr import transformers import librosa import torch # Load the Shuka model pipeline. pipe = transformers.pipeline( model="sarvamai/shuka_v1", trust_remote_code=True, device=0 if torch.cuda.is_available() else -1, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else None ) def process_audio(audio): """ Processes the input audio and returns a text response generated by the Shuka model. """ if audio is None: return "No audio provided." # Gradio returns a tuple (sample_rate, numpy_array) sample_rate, audio_data = audio # Resample to 16000 Hz if necessary if sample_rate != 16000: audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000) sample_rate = 16000 # Define conversation turns with a system prompt and a user prompt that signals audio input turns = [ {'role': 'system', 'content': 'Respond naturally and informatively.'}, {'role': 'user', 'content': '<|audio|>'} ] # Run the pipeline with the audio input and conversation context result = pipe({'audio': audio_data, 'turns': turns, 'sampling_rate': sample_rate}, max_new_tokens=512) # Extract the generated text response if isinstance(result, list) and len(result) > 0: response = result[0].get('generated_text', '') else: response = str(result) return response # Create the Gradio interface without the 'source' parameter. iface = gr.Interface( fn=process_audio, inputs=gr.Audio(type="numpy"), outputs="text", title="Sarvam AI Shuka Voice Demo", description="Upload a voice note and get a response using Sarvam AI's Shuka model." ) if __name__ == "__main__": iface.launch()