biasdetect / app.py
himel7's picture
Update app.py
208382e verified
import gradio as gr
from transformers import pipeline
import fitz # PyMuPDF
import re
import pandas as pd
# Load detection models
bias_detector = pipeline("text-classification", model="himel7/bias-detector")
bias_type_classifier = pipeline("text-classification", model="maximuspowers/bias-type-classifier")
# Load neutralizer models (lazy load for speed)
neutralizer_models = {
"BART Neutralizer": "himel7/bias-neutralizer-bart",
"T5 Small Neutralizer": "himel7/bias-neutralizer-t5s"
}
neutralizers = {}
def get_neutralizer(model_name):
if model_name not in neutralizers:
neutralizers[model_name] = pipeline("text2text-generation", model=neutralizer_models[model_name])
return neutralizers[model_name]
# Utils
def extract_text_from_pdf(pdf_file):
text = ""
with fitz.open(pdf_file) as pdf:
for page in pdf:
text += page.get_text("text")
return text
def split_into_sentences(text):
sentences = re.split(r'(?<=[.!?])\s+', text.strip())
return [s for s in sentences if s]
def analyze_sentence(sentence):
detection_result = bias_detector(sentence)[0]
label = detection_result['label']
score = detection_result['score']
if label == "LABEL_1": # Biased
type_result = bias_type_classifier(sentence)[0]
return {
"sentence": sentence,
"bias": "Biased",
"bias_score": round(score, 2),
"bias_type": type_result['label'],
"bias_type_score": round(type_result['score'], 2)
}
else:
return {
"sentence": sentence,
"bias": "Unbiased",
"bias_score": round(score, 2),
"bias_type": "-",
"bias_type_score": "-"
}
def analyze_pdf(pdf_file):
text = extract_text_from_pdf(pdf_file)
sentences = split_into_sentences(text)
results = [analyze_sentence(s) for s in sentences]
# Stats
total = len(results)
biased = sum(1 for r in results if r["bias"] == "Biased")
unbiased = total - biased
stats_md = f"""
### πŸ“Š Bias Statistics
- **Total Sentences:** {total}
- **Biased Sentences:** {biased} ({(biased/total)*100:.1f}%)
- **Unbiased Sentences:** {unbiased} ({(unbiased/total)*100:.1f}%)
"""
df = pd.DataFrame(results)
return stats_md, df
def analyze_text(text):
return analyze_sentence(text)
# New: Neutralize Bias
def neutralize_text(text, model_choice):
neutralizer = get_neutralizer(model_choice)
result = neutralizer(text, max_length=512, do_sample=False)
return result[0]["generated_text"]
def neutralize_pdf(pdf_file, model_choice):
text = extract_text_from_pdf(pdf_file)
sentences = split_into_sentences(text)
neutralizer = get_neutralizer(model_choice)
neutralized_sentences = [neutralizer(s, max_length=512, do_sample=False)[0]["generated_text"] for s in sentences]
neutralized_text = " ".join(neutralized_sentences)
return neutralized_text
# Top badges
badges_html = """
<p align="center">
<a href="https://huggingface.co/himel7/bias-detector">
<img src="https://img.shields.io/badge/πŸ€—-Hugging%20Face-yellow.svg">
</a>
<a href="https://huggingface.co/himel7/bias-detector">
<img src="https://img.shields.io/badge/Model-Homepage-purple.svg">
</a>
<a href="https://github.com/Himel1996/NewsBiasDetector/">
<img src="https://img.shields.io/badge/GitHub-Repo-orange.svg">
</a>
<a href="https://arxiv.org/abs/2505.13010v1">
<img src="https://img.shields.io/badge/arXiv-2505.13010-red.svg">
</a>
</p>
"""
# Build UI
with gr.Blocks() as demo:
gr.HTML(badges_html)
gr.Markdown("## Bias Analyzer & Neutralizer")
gr.Markdown("### This app helps you to detect biases in sentences, analyse them, and neutralize sentences.")
with gr.Tab("Single Sentence"):
text_input = gr.Textbox(lines=3, placeholder="Enter a sentence...")
output = gr.JSON()
btn = gr.Button("Analyze")
btn.click(analyze_text, inputs=text_input, outputs=output)
gr.Markdown("### Neutralize Bias")
model_choice = gr.Dropdown(list(neutralizer_models.keys()), label="Neutralizer Model", value="BART Neutralizer")
neutral_output = gr.Textbox(label="Neutralized Sentence", lines=3)
neutral_btn = gr.Button("Neutralize")
neutral_btn.click(neutralize_text, inputs=[text_input, model_choice], outputs=neutral_output)
with gr.Tab("Analyze PDF"):
pdf_input = gr.File(label="Upload PDF", file_types=[".pdf"])
stats_output = gr.Markdown()
table_output = gr.Dataframe(headers=["Sentence", "Bias", "Bias Score", "Bias Type", "Bias Type Score"])
analyze_btn = gr.Button("Analyze PDF")
analyze_btn.click(analyze_pdf, inputs=pdf_input, outputs=[stats_output, table_output])
gr.Markdown("### Neutralize Entire PDF")
model_choice_pdf = gr.Dropdown(list(neutralizer_models.keys()), label="Neutralizer Model", value="BART Neutralizer")
neutral_pdf_output = gr.Textbox(label="Neutralized PDF Text", lines=15)
neutral_pdf_btn = gr.Button("Neutralize PDF")
neutral_pdf_btn.click(neutralize_pdf, inputs=[pdf_input, model_choice_pdf], outputs=neutral_pdf_output)
if __name__ == "__main__":
demo.launch()