File size: 8,264 Bytes
2dddbac 34283f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import streamlit as st
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
import requests
from datetime import datetime, timedelta
import time
# API URL
API_URL = 'http://localhost:5000/api'
# Load dataset
@st.cache_data
def load_data():
data = pd.read_csv("dataset.csv", parse_dates=["PACKAGEDATE"])
data.set_index("PACKAGEDATE", inplace=True)
# Rename columns for clarity
column_mapping = {
"ODA3 CLIMATE_Co2": "CO2",
"ODA3 CLIMATE_Nem": "Humidity",
"ODA3 CLIMATE_Temp": "Temperature",
"ODA3 DOSE_EC_EC": "EC",
"ODA3 DOSE_EC_Wtemp": "Water Temperature",
"ODA3 DOSE_PH_PH": "pH"
}
data = data.rename(columns=column_mapping)
return data
# Optimal ranges for each metric
OPTIMAL_RANGES = {
'temp': {'min': 20, 'max': 25, 'unit': '°C'},
'humidity': {'min': 60, 'max': 80, 'unit': '%'},
'co2': {'min': 400, 'max': 1000, 'unit': 'ppm'},
'ph': {'min': 6.0, 'max': 7.0, 'unit': ''},
'ec': {'min': 500, 'max': 1500, 'unit': 'μS/cm'},
'wtemp': {'min': 18, 'max': 23, 'unit': '°C'}
}
# Page config
st.set_page_config(
page_title="Climate Metrics Dashboard",
page_icon="🌡️",
layout="wide"
)
# Title and description
st.title("AGRIDL AI Analysis/Predicted Metrics Dashboard")
st.markdown("Real-time monitoring and prediction system")
# Load the dataset
data = load_data()
# Create columns for metrics
def get_status_color(value, metric):
range_data = OPTIMAL_RANGES[metric]
if range_data['min'] <= value <= range_data['max']:
return "green"
elif (value < range_data['min'] - (range_data['max'] - range_data['min']) * 0.2 or
value > range_data['max'] + (range_data['max'] - range_data['min']) * 0.2):
return "red"
return "yellow"
def format_metric_value(value, metric):
unit = OPTIMAL_RANGES[metric]['unit']
return f"{value}{unit}"
def display_metric_card(title, value, metric_key):
color = get_status_color(value, metric_key)
st.metric(
label=title,
value=format_metric_value(value, metric_key),
delta=f"Optimal: {OPTIMAL_RANGES[metric_key]['min']}-{OPTIMAL_RANGES[metric_key]['max']}{OPTIMAL_RANGES[metric_key]['unit']}"
)
return st.number_input(f"New {title}", key=f"input_{metric_key}")
# Create tabs for different views
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Current Metrics", "Historical Data", "Time Analysis", "Data Analysis", "Correlation Matrix"])
with tab1:
# Buttons row
col1, col2, col3 = st.columns(3)
with col1:
refresh_metrics = st.button("Refresh Metrics")
with col2:
update_metrics = st.button("Update Metrics")
with col3:
update_predictions = st.button("Update Predictions")
# Metrics grid
try:
if refresh_metrics:
with st.spinner("Loading current metrics..."):
response = requests.get(f"{API_URL}/current-metrics")
if response.ok:
metrics_data = response.json()
st.success("Metrics refreshed successfully!")
else:
st.error("Failed to load metrics")
metrics_data = {}
else:
# Dummy data for demonstration
metrics_data = {
'temp': 22,
'humidity': 70,
'co2': 800,
'ph': 6.5,
'ec': 1000,
'wtemp': 20
}
# Display metrics in a grid
col1, col2, col3 = st.columns(3)
new_metrics = {}
with col1:
new_metrics['temp'] = display_metric_card("Temperature", metrics_data['temp'], 'temp')
new_metrics['ph'] = display_metric_card("pH", metrics_data['ph'], 'ph')
with col2:
new_metrics['humidity'] = display_metric_card("Humidity", metrics_data['humidity'], 'humidity')
new_metrics['ec'] = display_metric_card("EC", metrics_data['ec'], 'ec')
with col3:
new_metrics['co2'] = display_metric_card("CO2", metrics_data['co2'], 'co2')
new_metrics['wtemp'] = display_metric_card("Water Temperature", metrics_data['wtemp'], 'wtemp')
if update_metrics:
updated_metrics = {k: v for k, v in new_metrics.items() if v is not None}
if updated_metrics:
with st.spinner("Updating metrics..."):
response = requests.post(f"{API_URL}/update-metrics", json=updated_metrics)
if response.ok:
st.success("Metrics updated successfully!")
else:
st.error("Failed to update metrics")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
with tab2:
st.header("Historical Data Visualization")
# Select metric for visualization
metric = st.selectbox("Select Metric", data.columns)
# Date range selector
date_range = st.date_input(
"Select Date Range",
value=(data.index.min(), data.index.max()),
min_value=data.index.min().date(),
max_value=data.index.max().date()
)
# Create interactive plot
fig = px.line(data, y=metric, title=f"{metric} Over Time")
fig.update_layout(
xaxis_title="Date",
yaxis_title=metric,
showlegend=True
)
st.plotly_chart(fig, use_container_width=True)
# Show raw data
if st.checkbox("Show Raw Data"):
st.dataframe(data[metric].head(100))
with tab3:
st.header("Time-based Analysis")
# Calculate time-based aggregations
data_hourly = data.resample("H").mean()
data_daily = data.resample("D").mean()
data_monthly = data.resample("M").mean()
analysis_type = st.radio("Select Analysis Type", ["Hourly", "Daily", "Monthly"])
metric = st.selectbox("Select Metric for Analysis", data.columns, key="time_analysis")
if analysis_type == "Hourly":
plot_data = data_hourly
title = "Hourly Average"
elif analysis_type == "Daily":
plot_data = data_daily
title = "Daily Average"
else:
plot_data = data_monthly
title = "Monthly Average"
fig = px.line(plot_data, y=metric, title=f"{title}: {metric}")
st.plotly_chart(fig, use_container_width=True)
# Show statistics
st.subheader("Statistical Summary")
st.write(plot_data[metric].describe())
with tab4:
st.header("Data Analysis")
# Statistical analysis
st.subheader("Statistical Summary")
st.write(data.describe())
# Distribution plots
st.subheader("Distribution Analysis")
metric = st.selectbox("Select Metric for Distribution", data.columns, key="dist_analysis")
fig = px.histogram(data, x=metric, title=f"Distribution of {metric}")
st.plotly_chart(fig, use_container_width=True)
# Box plot
fig = px.box(data, y=metric, title=f"Box Plot of {metric}")
st.plotly_chart(fig, use_container_width=True)
with tab5:
st.header("Correlation Analysis")
# Calculate correlation matrix
correlation_matrix = data.corr()
# Create heatmap using plotly
fig = go.Figure(data=go.Heatmap(
z=correlation_matrix,
x=correlation_matrix.columns,
y=correlation_matrix.columns,
colorscale='RdBu',
zmin=-1,
zmax=1
))
fig.update_layout(
title="Correlation Matrix",
xaxis_title="Metrics",
yaxis_title="Metrics"
)
st.plotly_chart(fig, use_container_width=True)
# Show detailed correlation values
if st.checkbox("Show Detailed Correlation Values"):
st.write(correlation_matrix)
# Auto-refresh functionality
if st.sidebar.checkbox("Enable Auto-refresh", value=False):
refresh_interval = st.sidebar.slider("Refresh interval (seconds)",
min_value=30,
max_value=300,
value=60)
st.sidebar.info(f"Dashboard will refresh every {refresh_interval} seconds")
time.sleep(refresh_interval)
st.experimental_rerun() |