Spaces:
Runtime error
Runtime error
File size: 5,803 Bytes
c295391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [Chongjie Ye]
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
# Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
# This modified file is released under the same license.
from typing import *
import torch
import torch.nn as nn
from ...modules.utils import convert_module_to_f16, convert_module_to_f32
from ...modules import sparse as sp
from ...modules.transformer import AbsolutePositionEmbedder
from ...modules.sparse.transformer import SparseTransformerBlock
def block_attn_config(self):
"""
Return the attention configuration of the model.
"""
for i in range(self.num_blocks):
if self.attn_mode == "shift_window":
yield "serialized", self.window_size, 0, (16 * (i % 2),) * 3, sp.SerializeMode.Z_ORDER
elif self.attn_mode == "shift_sequence":
yield "serialized", self.window_size, self.window_size // 2 * (i % 2), (0, 0, 0), sp.SerializeMode.Z_ORDER
elif self.attn_mode == "shift_order":
yield "serialized", self.window_size, 0, (0, 0, 0), sp.SerializeModes[i % 4]
elif self.attn_mode == "full":
yield "full", None, None, None, None
elif self.attn_mode == "swin":
yield "windowed", self.window_size, None, self.window_size // 2 * (i % 2), None
class SparseTransformerBase(nn.Module):
"""
Sparse Transformer without output layers.
Serve as the base class for encoder and decoder.
"""
def __init__(
self,
in_channels: int,
model_channels: int,
num_blocks: int,
num_heads: Optional[int] = None,
num_head_channels: Optional[int] = 64,
mlp_ratio: float = 4.0,
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
window_size: Optional[int] = None,
pe_mode: Literal["ape", "rope"] = "ape",
use_fp16: bool = False,
use_checkpoint: bool = False,
qk_rms_norm: bool = False,
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.num_blocks = num_blocks
self.window_size = window_size
self.num_heads = num_heads or model_channels // num_head_channels
self.mlp_ratio = mlp_ratio
self.attn_mode = attn_mode
self.pe_mode = pe_mode
self.use_fp16 = use_fp16
self.use_checkpoint = use_checkpoint
self.qk_rms_norm = qk_rms_norm
self.dtype = torch.float16 if use_fp16 else torch.float32
if pe_mode == "ape":
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
self.input_layer = sp.SparseLinear(in_channels, model_channels)
self.blocks = nn.ModuleList([
SparseTransformerBlock(
model_channels,
num_heads=self.num_heads,
mlp_ratio=self.mlp_ratio,
attn_mode=attn_mode,
window_size=window_size,
shift_sequence=shift_sequence,
shift_window=shift_window,
serialize_mode=serialize_mode,
use_checkpoint=self.use_checkpoint,
use_rope=(pe_mode == "rope"),
qk_rms_norm=self.qk_rms_norm,
)
for attn_mode, window_size, shift_sequence, shift_window, serialize_mode in block_attn_config(self)
])
@property
def device(self) -> torch.device:
"""
Return the device of the model.
"""
return next(self.parameters()).device
def convert_to_fp16(self) -> None:
"""
Convert the torso of the model to float16.
"""
self.blocks.apply(convert_module_to_f16)
def convert_to_fp32(self) -> None:
"""
Convert the torso of the model to float32.
"""
self.blocks.apply(convert_module_to_f32)
def initialize_weights(self) -> None:
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
def forward(self, x: sp.SparseTensor) -> sp.SparseTensor:
h = self.input_layer(x)
if self.pe_mode == "ape":
h = h + self.pos_embedder(x.coords[:, 1:])
h = h.type(self.dtype)
for block in self.blocks:
h = block(h)
return h
|