File size: 6,094 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# MIT License

# Copyright (c) Microsoft

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Copyright (c) [2025] [Microsoft]
# SPDX-License-Identifier: MIT
from typing import *
import torch
import math
from . import DEBUG, BACKEND

if BACKEND == 'xformers':
    import xformers.ops as xops
elif BACKEND == 'flash_attn':
    import flash_attn
elif BACKEND == 'sdpa':
    from torch.nn.functional import scaled_dot_product_attention as sdpa
elif BACKEND == 'naive':
    pass
else:
    raise ValueError(f"Unknown attention backend: {BACKEND}")


__all__ = [
    'scaled_dot_product_attention',
]


def _naive_sdpa(q, k, v):
    """
    Naive implementation of scaled dot product attention.
    """
    q = q.permute(0, 2, 1, 3)   # [N, H, L, C]
    k = k.permute(0, 2, 1, 3)   # [N, H, L, C]
    v = v.permute(0, 2, 1, 3)   # [N, H, L, C]
    scale_factor = 1 / math.sqrt(q.size(-1))
    attn_weight = q @ k.transpose(-2, -1) * scale_factor
    attn_weight = torch.softmax(attn_weight, dim=-1)
    out = attn_weight @ v
    out = out.permute(0, 2, 1, 3)   # [N, L, H, C]
    return out


@overload
def scaled_dot_product_attention(qkv: torch.Tensor) -> torch.Tensor:
    """
    Apply scaled dot product attention.

    Args:
        qkv (torch.Tensor): A [N, L, 3, H, C] tensor containing Qs, Ks, and Vs.
    """
    ...

@overload
def scaled_dot_product_attention(q: torch.Tensor, kv: torch.Tensor) -> torch.Tensor:
    """
    Apply scaled dot product attention.

    Args:
        q (torch.Tensor): A [N, L, H, C] tensor containing Qs.
        kv (torch.Tensor): A [N, L, 2, H, C] tensor containing Ks and Vs.
    """
    ...

@overload
def scaled_dot_product_attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
    """
    Apply scaled dot product attention.

    Args:
        q (torch.Tensor): A [N, L, H, Ci] tensor containing Qs.
        k (torch.Tensor): A [N, L, H, Ci] tensor containing Ks.
        v (torch.Tensor): A [N, L, H, Co] tensor containing Vs.

    Note:
        k and v are assumed to have the same coordinate map.
    """
    ...

def scaled_dot_product_attention(*args, **kwargs):
    arg_names_dict = {
        1: ['qkv'],
        2: ['q', 'kv'],
        3: ['q', 'k', 'v']
    }
    num_all_args = len(args) + len(kwargs)
    assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
    for key in arg_names_dict[num_all_args][len(args):]:
        assert key in kwargs, f"Missing argument {key}"

    if num_all_args == 1:
        qkv = args[0] if len(args) > 0 else kwargs['qkv']
        assert len(qkv.shape) == 5 and qkv.shape[2] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, L, 3, H, C]"
        device = qkv.device

    elif num_all_args == 2:
        q = args[0] if len(args) > 0 else kwargs['q']
        kv = args[1] if len(args) > 1 else kwargs['kv']
        assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
        assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
        assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
        device = q.device

    elif num_all_args == 3:
        q = args[0] if len(args) > 0 else kwargs['q']
        k = args[1] if len(args) > 1 else kwargs['k']
        v = args[2] if len(args) > 2 else kwargs['v']
        assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
        assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
        assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
        assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
        device = q.device    

    if BACKEND == 'xformers':
        if num_all_args == 1:
            q, k, v = qkv.unbind(dim=2)
        elif num_all_args == 2:
            k, v = kv.unbind(dim=2)
        out = xops.memory_efficient_attention(q, k, v)
    elif BACKEND == 'flash_attn':
        if num_all_args == 1:
            out = flash_attn.flash_attn_qkvpacked_func(qkv)
        elif num_all_args == 2:
            out = flash_attn.flash_attn_kvpacked_func(q, kv)
        elif num_all_args == 3:
            out = flash_attn.flash_attn_func(q, k, v)
    elif BACKEND == 'sdpa':
        if num_all_args == 1:
            q, k, v = qkv.unbind(dim=2)
        elif num_all_args == 2:
            k, v = kv.unbind(dim=2)
        q = q.permute(0, 2, 1, 3)   # [N, H, L, C]
        k = k.permute(0, 2, 1, 3)   # [N, H, L, C]
        v = v.permute(0, 2, 1, 3)   # [N, H, L, C]
        out = sdpa(q, k, v)         # [N, H, L, C]
        out = out.permute(0, 2, 1, 3)   # [N, L, H, C]
    elif BACKEND == 'naive':
        if num_all_args == 1:
            q, k, v = qkv.unbind(dim=2)
        elif num_all_args == 2:
            k, v = kv.unbind(dim=2)
        out = _naive_sdpa(q, k, v)
    else:
        raise ValueError(f"Unknown attention module: {BACKEND}")
    
    return out