Spaces:
Runtime error
Runtime error
File size: 7,237 Bytes
c295391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# SPDX-License-Identifier: MIT
from typing import *
import torch
import math
from .. import SparseTensor
from .. import DEBUG, ATTN
if ATTN == 'xformers':
import xformers.ops as xops
elif ATTN == 'flash_attn':
import flash_attn
else:
raise ValueError(f"Unknown attention module: {ATTN}")
__all__ = [
'sparse_windowed_scaled_dot_product_self_attention',
]
def calc_window_partition(
tensor: SparseTensor,
window_size: Union[int, Tuple[int, ...]],
shift_window: Union[int, Tuple[int, ...]] = 0
) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]:
"""
Calculate serialization and partitioning for a set of coordinates.
Args:
tensor (SparseTensor): The input tensor.
window_size (int): The window size to use.
shift_window (Tuple[int, ...]): The shift of serialized coordinates.
Returns:
(torch.Tensor): Forwards indices.
(torch.Tensor): Backwards indices.
(List[int]): Sequence lengths.
(List[int]): Sequence batch indices.
"""
DIM = tensor.coords.shape[1] - 1
shift_window = (shift_window,) * DIM if isinstance(shift_window, int) else shift_window
window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size
shifted_coords = tensor.coords.clone().detach()
shifted_coords[:, 1:] += torch.tensor(shift_window, device=tensor.device, dtype=torch.int32).unsqueeze(0)
MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist()
NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)]
OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1]
shifted_coords[:, 1:] //= torch.tensor(window_size, device=tensor.device, dtype=torch.int32).unsqueeze(0)
shifted_indices = (shifted_coords * torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0)).sum(dim=1)
fwd_indices = torch.argsort(shifted_indices)
bwd_indices = torch.empty_like(fwd_indices)
bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device)
seq_lens = torch.bincount(shifted_indices)
seq_batch_indices = torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32) // OFFSET[0]
mask = seq_lens != 0
seq_lens = seq_lens[mask].tolist()
seq_batch_indices = seq_batch_indices[mask].tolist()
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
def sparse_windowed_scaled_dot_product_self_attention(
qkv: SparseTensor,
window_size: int,
shift_window: Tuple[int, int, int] = (0, 0, 0)
) -> SparseTensor:
"""
Apply windowed scaled dot product self attention to a sparse tensor.
Args:
qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
window_size (int): The window size to use.
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
shift (int): The shift to use.
"""
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
serialization_spatial_cache_name = f'window_partition_{window_size}_{shift_window}'
serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
if serialization_spatial_cache is None:
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(qkv, window_size, shift_window)
qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
else:
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
M = fwd_indices.shape[0]
T = qkv.feats.shape[0]
H = qkv.feats.shape[2]
C = qkv.feats.shape[3]
qkv_feats = qkv.feats[fwd_indices] # [M, 3, H, C]
if DEBUG:
start = 0
qkv_coords = qkv.coords[fwd_indices]
for i in range(len(seq_lens)):
seq_coords = qkv_coords[start:start+seq_lens[i]]
assert (seq_coords[:, 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
assert (seq_coords[:, 1:].max(dim=0).values - seq_coords[:, 1:].min(dim=0).values < window_size).all(), \
f"SparseWindowedScaledDotProductSelfAttention: window size exceeded"
start += seq_lens[i]
if all([seq_len == window_size for seq_len in seq_lens]):
B = len(seq_lens)
N = window_size
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
if ATTN == 'xformers':
q, k, v = qkv_feats.unbind(dim=2) # [B, N, H, C]
out = xops.memory_efficient_attention(q, k, v) # [B, N, H, C]
elif ATTN == 'flash_attn':
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) # [B, N, H, C]
else:
raise ValueError(f"Unknown attention module: {ATTN}")
out = out.reshape(B * N, H, C) # [M, H, C]
else:
if ATTN == 'xformers':
q, k, v = qkv_feats.unbind(dim=1) # [M, H, C]
q = q.unsqueeze(0) # [1, M, H, C]
k = k.unsqueeze(0) # [1, M, H, C]
v = v.unsqueeze(0) # [1, M, H, C]
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
out = xops.memory_efficient_attention(q, k, v, mask)[0] # [M, H, C]
elif ATTN == 'flash_attn':
cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
.to(qkv.device).int()
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens)) # [M, H, C]
out = out[bwd_indices] # [T, H, C]
if DEBUG:
qkv_coords = qkv_coords[bwd_indices]
assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
return qkv.replace(out)
|