Spaces:
Runtime error
Runtime error
File size: 2,037 Bytes
c295391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# SPDX-License-Identifier: MIT
import torch
import torch.nn as nn
from . import SparseTensor
__all__ = [
'SparseReLU',
'SparseSiLU',
'SparseGELU',
'SparseActivation'
]
class SparseReLU(nn.ReLU):
def forward(self, input: SparseTensor) -> SparseTensor:
return input.replace(super().forward(input.feats))
class SparseSiLU(nn.SiLU):
def forward(self, input: SparseTensor) -> SparseTensor:
return input.replace(super().forward(input.feats))
class SparseGELU(nn.GELU):
def forward(self, input: SparseTensor) -> SparseTensor:
return input.replace(super().forward(input.feats))
class SparseActivation(nn.Module):
def __init__(self, activation: nn.Module):
super().__init__()
self.activation = activation
def forward(self, input: SparseTensor) -> SparseTensor:
return input.replace(self.activation(input.feats))
|