File size: 3,313 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# MIT License

# Copyright (c) Microsoft

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Copyright (c) [2025] [Microsoft]
# SPDX-License-Identifier: MIT
import torch
import torch.nn as nn
from . import SparseTensor
from . import DEBUG

__all__ = [
    'SparseGroupNorm',
    'SparseLayerNorm',
    'SparseGroupNorm32',
    'SparseLayerNorm32',
]


class SparseGroupNorm(nn.GroupNorm):
    def __init__(self, num_groups, num_channels, eps=1e-5, affine=True):
        super(SparseGroupNorm, self).__init__(num_groups, num_channels, eps, affine)

    def forward(self, input: SparseTensor) -> SparseTensor:
        nfeats = torch.zeros_like(input.feats)
        for k in range(input.shape[0]):
            if DEBUG:
                assert (input.coords[input.layout[k], 0] == k).all(), f"SparseGroupNorm: batch index mismatch"
            bfeats = input.feats[input.layout[k]]
            bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
            bfeats = super().forward(bfeats)
            bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
            nfeats[input.layout[k]] = bfeats
        return input.replace(nfeats)


class SparseLayerNorm(nn.LayerNorm):
    def __init__(self, normalized_shape, eps=1e-5, elementwise_affine=True):
        super(SparseLayerNorm, self).__init__(normalized_shape, eps, elementwise_affine)

    def forward(self, input: SparseTensor) -> SparseTensor:
        nfeats = torch.zeros_like(input.feats)
        for k in range(input.shape[0]):
            bfeats = input.feats[input.layout[k]]
            bfeats = bfeats.permute(1, 0).reshape(1, input.shape[1], -1)
            bfeats = super().forward(bfeats)
            bfeats = bfeats.reshape(input.shape[1], -1).permute(1, 0)
            nfeats[input.layout[k]] = bfeats
        return input.replace(nfeats)


class SparseGroupNorm32(SparseGroupNorm):
    """
    A GroupNorm layer that converts to float32 before the forward pass.
    """
    def forward(self, x: SparseTensor) -> SparseTensor:
        return super().forward(x.float()).type(x.dtype)

class SparseLayerNorm32(SparseLayerNorm):
    """
    A LayerNorm layer that converts to float32 before the forward pass.
    """
    def forward(self, x: SparseTensor) -> SparseTensor:
        return super().forward(x.float()).type(x.dtype)