Spaces:
Runtime error
Runtime error
File size: 5,729 Bytes
c295391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# SPDX-License-Identifier: MIT
from typing import *
import torch
import torch.nn as nn
from . import SparseTensor
__all__ = [
'SparseDownsample',
'SparseUpsample',
'SparseSubdivide'
]
class SparseDownsample(nn.Module):
"""
Downsample a sparse tensor by a factor of `factor`.
Implemented as average pooling.
"""
def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]):
super(SparseDownsample, self).__init__()
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
def forward(self, input: SparseTensor) -> SparseTensor:
DIM = input.coords.shape[-1] - 1
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
assert DIM == len(factor), 'Input coordinates must have the same dimension as the downsample factor.'
coord = list(input.coords.unbind(dim=-1))
for i, f in enumerate(factor):
coord[i+1] = coord[i+1] // f
MAX = [coord[i+1].max().item() + 1 for i in range(DIM)]
OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1]
code = sum([c * o for c, o in zip(coord, OFFSET)])
code, idx = code.unique(return_inverse=True)
new_feats = torch.scatter_reduce(
torch.zeros(code.shape[0], input.feats.shape[1], device=input.feats.device, dtype=input.feats.dtype),
dim=0,
index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]),
src=input.feats,
reduce='mean'
)
new_coords = torch.stack(
[code // OFFSET[0]] +
[(code // OFFSET[i+1]) % MAX[i] for i in range(DIM)],
dim=-1
)
out = SparseTensor(new_feats, new_coords, input.shape,)
out._scale = tuple([s // f for s, f in zip(input._scale, factor)])
out._spatial_cache = input._spatial_cache
out.register_spatial_cache(f'upsample_{factor}_coords', input.coords)
out.register_spatial_cache(f'upsample_{factor}_layout', input.layout)
out.register_spatial_cache(f'upsample_{factor}_idx', idx)
return out
class SparseUpsample(nn.Module):
"""
Upsample a sparse tensor by a factor of `factor`.
Implemented as nearest neighbor interpolation.
"""
def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]):
super(SparseUpsample, self).__init__()
self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor
def forward(self, input: SparseTensor) -> SparseTensor:
DIM = input.coords.shape[-1] - 1
factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
assert DIM == len(factor), 'Input coordinates must have the same dimension as the upsample factor.'
new_coords = input.get_spatial_cache(f'upsample_{factor}_coords')
new_layout = input.get_spatial_cache(f'upsample_{factor}_layout')
idx = input.get_spatial_cache(f'upsample_{factor}_idx')
if any([x is None for x in [new_coords, new_layout, idx]]):
raise ValueError('Upsample cache not found. SparseUpsample must be paired with SparseDownsample.')
new_feats = input.feats[idx]
out = SparseTensor(new_feats, new_coords, input.shape, new_layout)
out._scale = tuple([s * f for s, f in zip(input._scale, factor)])
out._spatial_cache = input._spatial_cache
return out
class SparseSubdivide(nn.Module):
"""
Upsample a sparse tensor by a factor of `factor`.
Implemented as nearest neighbor interpolation.
"""
def __init__(self):
super(SparseSubdivide, self).__init__()
def forward(self, input: SparseTensor) -> SparseTensor:
DIM = input.coords.shape[-1] - 1
# upsample scale=2^DIM
n_cube = torch.ones([2] * DIM, device=input.device, dtype=torch.int)
n_coords = torch.nonzero(n_cube)
n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1)
factor = n_coords.shape[0]
assert factor == 2 ** DIM
# print(n_coords.shape)
new_coords = input.coords.clone()
new_coords[:, 1:] *= 2
new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(new_coords.dtype)
new_feats = input.feats.unsqueeze(1).expand(input.feats.shape[0], factor, *input.feats.shape[1:])
out = SparseTensor(new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape)
out._scale = input._scale * 2
out._spatial_cache = input._spatial_cache
return out
|