File size: 5,729 Bytes
c295391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# MIT License

# Copyright (c) Microsoft

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# Copyright (c) [2025] [Microsoft]
# SPDX-License-Identifier: MIT
from typing import *
import torch
import torch.nn as nn
from . import SparseTensor

__all__ = [
    'SparseDownsample',
    'SparseUpsample',
    'SparseSubdivide'
]


class SparseDownsample(nn.Module):
    """
    Downsample a sparse tensor by a factor of `factor`.
    Implemented as average pooling.
    """
    def __init__(self, factor: Union[int, Tuple[int, ...], List[int]]):
        super(SparseDownsample, self).__init__()
        self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor

    def forward(self, input: SparseTensor) -> SparseTensor:
        DIM = input.coords.shape[-1] - 1
        factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
        assert DIM == len(factor), 'Input coordinates must have the same dimension as the downsample factor.'

        coord = list(input.coords.unbind(dim=-1))
        for i, f in enumerate(factor):
            coord[i+1] = coord[i+1] // f

        MAX = [coord[i+1].max().item() + 1 for i in range(DIM)]
        OFFSET = torch.cumprod(torch.tensor(MAX[::-1]), 0).tolist()[::-1] + [1]
        code = sum([c * o for c, o in zip(coord, OFFSET)])
        code, idx = code.unique(return_inverse=True)

        new_feats = torch.scatter_reduce(
            torch.zeros(code.shape[0], input.feats.shape[1], device=input.feats.device, dtype=input.feats.dtype),
            dim=0,
            index=idx.unsqueeze(1).expand(-1, input.feats.shape[1]),
            src=input.feats,
            reduce='mean'
        )
        new_coords = torch.stack(
            [code // OFFSET[0]] +
            [(code // OFFSET[i+1]) % MAX[i] for i in range(DIM)],
            dim=-1
        )
        out = SparseTensor(new_feats, new_coords, input.shape,)
        out._scale = tuple([s // f for s, f in zip(input._scale, factor)])
        out._spatial_cache = input._spatial_cache

        out.register_spatial_cache(f'upsample_{factor}_coords', input.coords)
        out.register_spatial_cache(f'upsample_{factor}_layout', input.layout)
        out.register_spatial_cache(f'upsample_{factor}_idx', idx)

        return out


class SparseUpsample(nn.Module):
    """
    Upsample a sparse tensor by a factor of `factor`.
    Implemented as nearest neighbor interpolation.
    """
    def __init__(self, factor: Union[int, Tuple[int, int, int], List[int]]):
        super(SparseUpsample, self).__init__()
        self.factor = tuple(factor) if isinstance(factor, (list, tuple)) else factor

    def forward(self, input: SparseTensor) -> SparseTensor:
        DIM = input.coords.shape[-1] - 1
        factor = self.factor if isinstance(self.factor, tuple) else (self.factor,) * DIM
        assert DIM == len(factor), 'Input coordinates must have the same dimension as the upsample factor.'

        new_coords = input.get_spatial_cache(f'upsample_{factor}_coords')
        new_layout = input.get_spatial_cache(f'upsample_{factor}_layout')
        idx = input.get_spatial_cache(f'upsample_{factor}_idx')
        if any([x is None for x in [new_coords, new_layout, idx]]):
            raise ValueError('Upsample cache not found. SparseUpsample must be paired with SparseDownsample.')
        new_feats = input.feats[idx]
        out = SparseTensor(new_feats, new_coords, input.shape, new_layout)
        out._scale = tuple([s * f for s, f in zip(input._scale, factor)])
        out._spatial_cache = input._spatial_cache
        return out
    
class SparseSubdivide(nn.Module):
    """
    Upsample a sparse tensor by a factor of `factor`.
    Implemented as nearest neighbor interpolation.
    """
    def __init__(self):
        super(SparseSubdivide, self).__init__()

    def forward(self, input: SparseTensor) -> SparseTensor:
        DIM = input.coords.shape[-1] - 1
        # upsample scale=2^DIM
        n_cube = torch.ones([2] * DIM, device=input.device, dtype=torch.int)
        n_coords = torch.nonzero(n_cube)
        n_coords = torch.cat([torch.zeros_like(n_coords[:, :1]), n_coords], dim=-1)
        factor = n_coords.shape[0]
        assert factor == 2 ** DIM
        # print(n_coords.shape)
        new_coords = input.coords.clone()
        new_coords[:, 1:] *= 2
        new_coords = new_coords.unsqueeze(1) + n_coords.unsqueeze(0).to(new_coords.dtype)
        
        new_feats = input.feats.unsqueeze(1).expand(input.feats.shape[0], factor, *input.feats.shape[1:])
        out = SparseTensor(new_feats.flatten(0, 1), new_coords.flatten(0, 1), input.shape)
        out._scale = input._scale * 2
        out._spatial_cache = input._spatial_cache
        return out